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Abstract. This chapter outlines the research, development and perspectives of 
quantum neural networks – a burgeoning new field which integrates classical 
neurocomputing with quantum computation [1].  It is argued that the study of 
quantum neural networks may give us both new undestanding of brain function as 
well as unprecedented possibilities in creating new systems for information 
processing, including solving classically intractable problems, associative memory 
with  exponential capacity and possibly overcoming the limitations posed by the 
Church-Turing thesis. 
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Why quantum neural networks? 

There are two main reasons to discuss quantum neural networks.  One has its 
origin in arguments for the essential role which quantum processes play in the 
living brain.  For example, Roger Penrose has argued that a new physics binding 
quantum phenomena with general relativity can explain such mental abilities as 
understanding, awareness and consciousness [2].  However, this approach 
advocates the study of intracellular structures, such as microtubules rather than 
that of the networks of neurons themselves [3].  A second motivation is the 
possibility that the field of classical artificial neural networks can be generalized 
to the quantum domain by eclectic combination of that field with the promising 
new field of quantum computing [4].  Both considerations suggest new 
understanding of mind and brain function as well as new unprecedented abilities 
in information processing.  Here we consider quantum neural networks as the next 
natural step in the evolution of neurocomputing systems, focusing our attention on 
artificial rather than biological systems.  We outline different approaches to the 



realization of quantum distributed processing and argue that, as in the case of 
quantum computing [5], Everett’s many universes interpretation of quantum 
mechanics [6] can be used as a general framework for producing quantum analogs 
of well-known classical artificial neural networks.  We also outline some 
perspectives on quantum neurocomputers in the next century. 

Neural networks: toward quantum analogs 

There are many different approaches to what we can call quantum neural 
networks.  Many researchers use their own analogies in establishing a connection 
between quantum mechanics and neural networks.  The main concepts of these 
two fields may be considered  as follows [7-8]: 

 

             Table 1.  Main concepts of quantum mechanics and neural networks 

Quantum mechanics Neural Networks 

 wave function neuron 

Superposition (coherence) interconnections (weights) 

Measurement   (decoherence) evolution to attractor  

Entanglement learning rule 

unitary transformations gain function (transformation) 

 
One should be careful not to consider corresponding concepts in the two columns 
as analogical – in the table above their order is arbitrary.  Indeed, the 
establishment of such correspondences is a major challenge in the development of 
a model of quantum neural networks.  

To date, quantum ideas have been proposed for the effective realization of 
classical –  rather than neural –  computation.  The concept of quantum 
computation may arguably be traced back to the pioneering work of Richard 
Feynman [1], who examined the role quantum effects would play in the 
development of future hardware.  As hardware speeds continue to increase, 
hardware scales correspondingly continue to decrease and at some point in the not 
too distant future, Feynman realized, gates and wires may consist of only a few 
atoms, and quantum effects will then play a major role in hardware 
implementation1.  Feynman concluded that such quantum devices can have 

                                                           
1 It is somewhat remarkable that in 1982 just as Richard Feynman  published his first paper 
on quantum computation, John Hopfield proposed his model of neural content-addressable 
memory [9], which attracted many physicists to the field of artificial neural networks. 



significant advantages over classical computational mediums.  In 1985 David 
Deutsch formalized the foundations of quantum computation [5]. 

Some Quantum Concepts 
Quantum computation is based upon physical principles from the theory of 
quantum mechanics (QM), which is in many ways counterintuitive.  Yet it has 
provided us with perhaps the most accurate physical theory (in terms of predicting 
experimental results) ever devised by science.  The theory is well-established and 
is covered in its basic form by many textbooks (see for example [10]).  Several 
necessary ideas that form the basis for the study of quantum computation are 
briefly reviewed here.  
Linear superposition is closely related to the familiar mathematical principle of 
linear combination of vectors.  Quantum systems are described by a wave function 
ψ that exists in a Hilbert space.  The Hilbert space has a set of states, iφ , that 

form a basis, and the system is described by a quantum state ψ ,  
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ψ  is said to be in a linear superposition of the basis states iφ , and in the 
general case, the coefficients ci may be complex.  Use is made here of the Dirac 
bracket notation, where the ket ⋅  is analogous to a column vector, and the bra 

⋅  is analogous to the complex conjugate transpose of the ket.  In quantum 
mechanics the Hilbert space and its basis have a physical interpretation, and this 
leads directly to perhaps the most counterintuitive aspect of the theory.  The 
counter intuition is this -- at the microscopic or quantum level, the state of the 
system is described by the wave function ψ, that is, as a linear superposition of all 
basis states (i.e. in some sense the system is in all basis states at once).  However, 
at the macroscopic or classical level the system can be in only a single basis state.  
For example, at the quantum level an electron can be in a superposition of many 
different energies; however, in the classical realm this obviously cannot be.  
Coherence and decoherence are closely related to the idea of linear 
superposition.  A quantum system is said to be coherent if it is in a linear 
superposition of its basis states.  A result of quantum mechanics is that if a system 
that is in a linear superposition of states interacts in any way with its environment, 
the superposition is destroyed.  This loss of coherence is called decoherence and is 
governed by the wave function ψ.  The coefficients ci are called probability 
amplitudes, and 2

ic gives the probability of ψ  collapsing into state iφ  if it 
decoheres.  Note that the wave function ψ describes a real physical system that 
must collapse to exactly one basis state.  Therefore, the probabilities governed by 
the amplitudes ci must sum to unity.  This necessary constraint is expressed as the 
unitarity condition  
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    In the Dirac notation, the probability that a quantum state ψ  will collapse into 

an eigenstate iφ  is written 
2

ψφi  and is analogous to the dot product 

(projection) of two vectors.  Consider, for example, a discrete physical variable 
called spin.  The simplest spin system is a two-state system, called a spin-1/2 
system, whose basis states are usually represented as ↑  (spin up) and ↓  (spin 

down).  In this simple system the wave function ψ is a distribution over two 
values (up and down) and a coherent state ψ  is a linear superposition of ↑  

and ↓ .  One such state might be  
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    As long as the system maintains its quantum coherence it cannot be said to be 
either spin up or spin down.  It is in some sense both at once.  Classically, of 
course, it must be one or the other, and when this system decoheres the result is, 
for example, the ↑  state with probability  
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A simple two-state quantum system, such as the spin-1/2 system just 
introduced, is used as the basic unit of quantum computation.  Such a system is 
referred to as a quantum bit or qubit, and renaming the two states 0  and 1  it is 
easy to see why this is so.  

Operators on a Hilbert space describe how one wave function is changed into 
another.  Here they will be denoted by a capital letter with a hat, such as Â , and 
they may be represented as matrices acting on vectors.  Using operators, an 
eigenvalue equation can be written iii aA φφ =ˆ , where ai is the eigenvalue.  The 

solutions iφ  to such an equation are called eigenstates and can be used to 
construct the basis of a Hilbert space as discussed previously.  In the quantum 
formalism, all properties are represented as operators whose eigenstates are the 
basis for the Hilbert space associated with that property and whose eigenvalues 
are the quantum allowed values for that property.  It is important to note that 
operators in quantum mechanics must be linear operators and further that they 
must be unitary so that IAAAA ˆˆˆˆˆ †† == , Î  is the identity operator, and †Â  is 
the complex conjugate transpose, or adjoint, of Â . 
Interference is a familiar wave phenomenon.  Wave peaks that are in phase 
interfere constructively (magnify each other's amplitude) while those that are out 



of phase interfere destructively (decrease or eliminate each other's amplitude).  
This is a phenomenon common to all kinds of wave mechanics from water waves 
to optics.  The well-known double slit experiment demonstrates empirically that at 
the quantum level interference also applies to the probability waves of quantum 
mechanics.  As a simple example, suppose that the wave function described above 
is represented in vector form as  
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and suppose that it is operated upon by an operator  described by the following 
matrix,  
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The result is  
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and therefore now  
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    Notice that the amplitude of the ↑  state has increased while the amplitude of 

the ↓  state has decreased.  This is due to the wave function interfering with 

itself through the action of the operator -- the different parts of the wave function 
interfere constructively or destructively according to their relative phases just like 
any other kind of wave.  
Entanglement is the potential for quantum states to exhibit correlations that 
cannot be accounted for classically.  From a computational standpoint, 
entanglement seems intuitive enough -- it is simply the fact that correlations can 
exist between different qubits -- for example if one qubit is in the 1  state, 

another will be in the 1  state.  However, from a physical standpoint, 
entanglement is little understood.  The questions of what exactly it is and how it 
works are still not resolved.  What makes it so powerful (and so little understood) 
is the fact that since quantum states exist as superpositions, these correlations exist 
in superposition as well.  When the superposition is destroyed, the proper 
correlation is somehow communicated between the qubits, and it is this 
“communication” that is the crux of entanglement.  Mathematically, entanglement 



may be described using the density matrix formalism.  The density matrix  of a 

quantum state 
ψρ

ψ  is defined as  

ψψρψ =  

For example, the quantum state  
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appears in vector form as  
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and it may also be represented as the density matrix  
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while the state  
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is represented as  
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and the state  
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is represented as  



















==

1011
0000
1011
1011

3
1ζζρζ  

where the matrices and vectors are indexed by the state labels 00, ..., 11.  Now, 
notice that  can be factorized as  ξρ
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where ⊗ is the normal tensor product.  On the other hand,  can not be 

factorized.  States that cannot be factorized are said to be entangled, while those 
that can be factorized are not.  Notice that can be partially factorized two 

different ways, one of which is  
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(the other contains the factorization of  and a different remainder); however, in 

both cases the factorization is not complete.  Therefore,  is also entangled, but 

not to the same degree as  (because  can be partially factorized but  

cannot).  Thus there are different degrees of entanglement and much work has 
been done on better understanding and quantifying it [11-12].  It is interesting to 
note from a computational standpoint that quantum states that are superpositions 
of only basis states that are maximally far apart in terms of Hamming distance are 
those states with the greatest entanglement.  For example,  is a superposition 

of only the states 00 and 11, which have a maximum Hamming spread, and 
therefore  is maximally entangled.  Finally, it should be mentioned that while 

interference is a quantum property that has a classical cousin, entanglement is a 
completely quantum phenomenon for which there is no classical analog.  
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ψρ ζρ ψρ
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ψρ

Interpretations of quantum theory 

It is important to note that much of the power of classical artificial neural 
networks is due to their massively parallel, distributed processing of information 
and also due to the nonlinearity of the transformation performed by the network 
nodes (neurons).  On the other hand, quantum mechanics offers the possibility of 
an even more powerful quantum parallelism which is expressed in the principle of 
superposition.  This principle provides quantum computing an advantage in 
processing huge data sets.  Though quantum computing implies parallel 
processing of all possible configurations of the state of a register composed of N 
qubits, only one result can be read after the decoherence of the quantum 
superposition into one of its basis states.  However, entanglement provides the 
possibility of measuring the states of all qubits in a register whose values are 
interdependent.  Though the mathematics of quantum mechanics is fairly well 
understood and accepted, the physical reality of what the theory means is much 
debated and there exist different interpretations of quantum mechanics, including: 



  
• Copenhagen interpretation [7]; 
• Feynman path-integral formalism [13]; 
• Many universes (many-world) interpretation of Everett [6], etc. 

 
The choice of interpretation is important in establishing different analogies 
between quantum physics and neurocomputing. 
 The field of neural networks contains several important basic ideas, which 
include the concept of a processing element (neuron), the transformation 
performed by this element (in general, input summation and nonlinear mapping of 
the result into an output value), the interconnection structure between neurons, the 
network dynamics, and the learning rule which governs the modification of 
interconnection strengths.  A major dichotomization of neural networks can be 
realized by considering whether they are trained in a supervised or unsupervised 
manner.  An example of the latter is the Hopfield model of content-addressable 
memory using the concept of attractor states [9]. 
    We shall argue below that it is adequate to choose such a Hopfield network as a 
reference point for the consideration of neural models in general.  In fact, the 
Hopfield model itself was proposed during a previous “invasion” of physics into 
the theory of artificial neural networks in 1982.  What Hopfield discovered was an 
analogy between networks with symmetrical bonds and spin glasses. 
    While quantum mechanics is a linear theory, neurocomputing is very dependent 
upon nonlinear approaches to data processing.  At first glance, this appears to 
complicate the establishment of a correspondence between the two fields.  
However there are different ways to overcome this difficulty. 
     As mentioned earlier, evolutionary operators in quantum mechanics must be 
unitary, and certain aspects of any quantum computation must be considered as 
evolutionary.  For example, storing patterns in a quantum system demands 
evolutionary processes since the system must maintain a coherent superposition 
that represents the stored patterns.  On the other hand, other aspects of quantum 
computation preclude unitarity (and thus linearity) altogether.  In particular, 
decoherence is a non-unitary process.   
     In the Copenhagen interpretation, non-unitary operators do exist in quantum 
mechanics and in nature.  For example, any observation of a quantum system can 
be thought of as an operator that is neither evolutionary nor unitary.  In fact, the 
Copenhagen school of thought suggests that this non-evolutionary behavior of 
quantum systems is just as critical to our understanding of quantum mechanics as 
is their evolutionary behavior.  Now, since recalling a pattern from a quantum 
system would require the decoherence and collapse of the system at some point (at 
the very latest when the system is observed), it can be argued that pattern recall 
may be considered as a non-unitary process.  In which case, the use of unitary 
operators becomes unnecessary.  Since the decoherence and collapse of a quantum 
wave function is non-unitary and since pattern recall in a quantum system requires 
decoherence and collapse at some point, why not make explicit use of this 



non-unitarity, in the pattern recall process?  This decoherence of a quantum state 
can be considered as the analog of the evolution of a neural network state to an 
attractor basin.  This analogy has been mentioned in the work of Perus [14]2.  
    As a second approach to reconciling the linearity of quantum mechanics with 
the nonlinearity inherent in artificial neural networks, consider the Feynman 
interpretation of quantum mechanics, which is based on the use of path integrals.  
The probability of an event is expressed by the formula, 
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    Here nonlinearity can be due both to the nonlinear form of the potential V(x) 
and also to the operation of the exponent.  This fact has been used in approaches 
to modelling quantum neural networks by Elizabeth Behrman and coworkers 
[16-17] and Ben Goertzel [18] (some analogies used for the development of 
quantum neural networks are summarized in Table 2).  Behrman et al. first 
developed a temporal model of a quantum neural network which utilizes a 
quantum dot molecule coupled to a substrate lattice through optical phonons [16].  
In this model temporal evolution of the system resembles the equations for virtual 
neurons and the timeline discretization points for the Feynman path integral serve 
as these virtual neurons.  The concept of neurons used here is rather artificial, and 
in fact the number of neurons depends on the parameters of the temporal 
discretization scheme, rather than on the number of quantum particles involved.  
Recently, this group working at Wichita State University proposed a spatial 
model for a quantum neural network based on the use of a spatial array of 
quantum dot molecules.  It was shown that any logical gate, including a purely 
quantum one – phase shift – can be performed using these systems [17].  Note that 
another approach to quantum neural networks used by Ron Chrisley from the 
University of Sussex [19-20], considers the positions of slits in an interference 
experiment (similar to Young’s double-slit experiment) as representing neuron 
state values while the positions of other slits encode the values of the network 
weights.  Obviously, there is a high diversity of possible approaches to the 
construction of a model of quantum neural networks.   
    But we shall try to argue that as in the case of quantum computing the most 
consistent way to obtain a general model seems to be Everett’s many universes 
interpretation of quantum mechanics.  Everett’s approach suggests that 
decoherence or collapse of the wave function is an illusion, and that actually the 
wave function obeys the Schrödinger equation at all times.  Rather than causing 
the wave function to collapse, the effect of the measurement is to split the 
observer into a number of copies, each copy observing just one of the possible 
results of a measurement, unaware of the other possible outcomes.  It follows that 

                                                           
2 However, in some sense, the formalism described by him is much more similar to the 
concept of the synergetical computer proposed by Hermann Haken [15 ]. 



there exist many, mutually unobservable but equally real universes, each 
corresponding to a single possible outcome of the measurement [21]. 
    Using this metatheory of quantum mechanics as a starting point, we can 
combine the field of artificial neural networks with that of quantum computation 
in a natural way.  For our purposes it is sufficient to consider the application of 
neural approaches, in their simplest forms, to pattern recognition.  We shall then 
see how a concept of quantum neural networks naturally emerges from the theory 
of neurocomputing. 
  

Table 2.  Quantum analogies used for different concepts of artificial neural networks 

Model Neuron Connections Transformation Network Dynamics 

Perus quantum Green 
function 

linear temporal collapse as 
convergence 
to attractor 

Chrisley classical 
(slit 
position) 

classical  (slit   
position) 

nonlinear  
through 
superposition 

multilayer non-
superpositio
nal 

Behrman 
et al. 

time slice, 

quantum 

interactions 
through 
phonons 

nonlinear  
through 
potential energy 
and exponent 
function 

temporal 
and spatial 

Feynman 
path integral 

Goertzel classical quantum nonlinear classical Feynman 
path- 
integral 

Menneer 
and 

Narayanan 

classical classical nonlinear single-item 
networks 
in many 
universes  

classical 

Ventura qubit entanglement - single-item 
modules in 
many 
universes 

unitary and 
non-unitary 
transformati
ons 

  

How pattern recognition leads us to quantum neural networks 
One simple approach to pattern recognition can be termed a template-based 
method, in which examples of different pattern classes are stored separately as 
multiple templates.  A presented stimulus can then be recognized (classified) 
according to the class of the template most similar to the input stimulus.  To be 
efficient this process should be performed in parallel since the number of stored 



templates can be prohibitive to sequential processing.  In general, this scheme is 
characterized by rather low performance due to a lack of generalization and also 
due to the need to guarantee invariant recognition. 
    Neural networks provide the ability to use only one system to store multiple 
data belonging to different classes and to classify the presented stimulus in a  
parallel, distributed manner [22].  Thus, the problem of parallelism is naturally 
solved in this approach.  Further, the capability of approximating arbitrarily 
complex functions makes neural networks very effective for creating classification 
systems. 
    It is often desirable to use multimodular systems consisting of so-called single-
class neural networks [23-25].  In this scheme, a network is trained using only 
examples of patterns belonging to a single class, and a different network is trained 
for each class to be recognized.  Classification is performed by presenting the 
input stimulus to each of the different modules, comparing their outputs and using 
some criterion to choose a winning module.  The problem of parallelism arises 
again in this approach (though, not nearly as acutely as in the case of a template-
based method), but it has many advantages associated with the usefulness of 
spurious memories for generalization [26].  Various types of neural systems can 
be used as the basis for such a multimodular recognition scheme, including auto-
associative perceptrons, but what is especially pertinent to this discussion is the 
fact that Hopfield networks seem to be especially good candidates for this role.  
    It is well known that any state of the Hopfield network is either a stable 
attractor or evolves to some such attractor.  It is usual to interpret attractors as 
memorized patterns, or sometimes as spurious memories, while non-stable states 
can be considered as corrupted versions of memories containing enough partial 
information to retrieve the memorized pattern stored as the nearest stable state.  
Numerous  studies have been performed to investigate the properties of content-
addressable memories which can be implemented by the Hopfield model and its 
various derivatives [27].  The main drawback of such memories is their limited 
capacity.  However, using a probabilistic interpretation of the network state 
energy – the functional which governs state dynamics – it can be argued that the 
Hopfield network is best suited for the extraction of the locally most plausible 
version of a single prototype, for which all stored patterns can be considered as 
corrupted versions [28].  This approach can be also thought of as implementing 
the use of distributed templates in the sense that all representatives of a given class 
are compared with an external stimulus in a parallel, distributed manner.  What is 
even more interesting, this approach opens the door to the development of 
quantum neural networks by suggesting a further generalization of the idea of 
class-specific neural networks.  Namely, we can generalize the idea to its extreme, 
considering a system of separate networks each trained with only a single pattern!  
This, in turn, brings us naturally to the many universes approach to quantum 
mechanics. 



Many universes approach 

In memorizing a set of patterns, why not use a set of many Hopfield networks, 
each of which stores a single pattern?  In the classical Hopfield model we 
typically use only one network to store many patterns, and we sum all pattern 
correlations in order to build the network’s Hebbian interconnections as follows. 
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    This summation causes multiple problems if we want to consider a network as a  
passive memorization system.  The interference of the different patterns leads to a 
loss of the stability for some memories (producing, instead, a spurious memory) 
and, as a result, to a rather restricted memory capacity,  which grows at best only 
linearly with the number of neurons [27].  
    If, on the other hand, we simply generate multiple Hopfield networks which 
store only one pattern each, we lose any parallelism in processing the information.  
But what about a quantum approach?  Imagine, that we can store all patterns as 
the quantum superposition.  
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    In this case, each of the patterns can be considered as existing in a separate 
universe.  Moreover, the interaction of such a superposition with the environment 
is performed in parallel, and further, this parallelism has a quantum nature.  It has 
in fact been shown in, given a set of patterns, how such a superposition may be 
created [29], and each of the basis states in the superposition will play the role of a 
single memory state independent of the number of them that exist in the 
superposition.  In theory, then, a quantum associative memory can have 
exponential memory capacity! (See [30].) It should also be mentioned here that 
although spurious states can arise in such a quantum memory, these spurious state 
are not the result of an interference of memories as in the classical case but instead 
arise for a completely different reason in the retrieval phase and therefore do not 
directly influence stored patterns.  
    Let us imagine that instead of the various memory states existing in parallel 
universes, we have single-memory, Hopfield-type networks existing in these 
universes.  In the classical Hopfield network, the existence of symmetric, Hebbian 
connections guarantees the stability of a unique stored pattern; similarly, in a 
quantum analog of the Hopfield network the integrity of a stored pattern (basis 
state) is due to entanglement [31].  This property characterizes multi-particle 
systems and is the basis of all known quantum algorithms.  Now we can consider 
quantum associative memory as a realization of the extreme condition of using 
many Hopfield networks, each storing a single pattern in parallel quantum 
universes! 



    Continuing this line of reasoning, we can further imagine more complex neural 
structures existing in such parallel worlds.  Such an idea has been explored by 
Menneer and Narayanan, who consider a set of multilayer perceptrons, each 
trained on only one pattern that are combined into a quantum network whose 
weights are superpositions of the weights of all perceptrons existing in parallel 
universes [32]. 
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Fig. 1.  Many-class networks are trained using the examples from different classes (here 
“Neurons” and “Nebulae” together) – left; A set of modular single-class neural networks 
use for training only the objects belonging to one class (two networks for two classes: 
“Neurons” and “Nebulae” separately) – center; Quantum neural networks may be trained 
using only pattern each! (four networks for four examples in many universes) – right.  
 
    Moreover, they also consider the many universes approach to quantum neural 
networks as methodologically correct and cognitively plausible.  Indeed, fast 
learning of the networks in separate universes avoids the objection to neural 
network models being adequate accounts of mind because multiple presentations 
of patterns is implausible for human learning [32].  



Quantum associative memory 

One of the most promising approaches to quantum neurocomputing is the 
quantum associative memory, of which one approach is described in [33-35].  The 
task of pattern association can be broken down into two major components: 
memorization and recall.  The memorization step consists of storing patterns in the 
memory while the recall step entails pattern completion or pattern association 
based on partial and/or noisy input. 

Memorization 

An efficient quantum algorithm for constructing a coherent state over n qubits to 
represent a set of m patterns is presented in [29].  The algorithm is implemented 
using a polynomial number (in the length and number of patterns) of elementary 
operations on one, two, or three qubits.  The key operator in this process is  
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where m≥p≥1.  This is actually a set of operators that are conditional transforms – 
there is a different  operator associated with each pattern to be stored.  The 
algorithm also makes use of various versions of some standard quantum 
computational operators such as the Controlled-Not and Fredkin gates.  Now 
given a set P of m binary patterns of length n, the quantum algorithm for storing 
the patterns requires a set of 2n+1 qubits, the first n of which actually store the 
patterns and can be thought of as n neurons in a quantum associative memory.  
The remaining n+1 qubits are ancillary qubits used for bookkeeping and are 
restored to the state 

pŜ

0  after every storage iteration.  Each iteration through the 

algorithm makes use of a different  operator and results in another pattern 
being incorporated into the quantum system.  The result is a coherent 
superposition of states that correspond to the patterns, with the amplitudes of the 
states in the superposition all being equal.  The algorithm requires O(mn) steps to 
encode the m patterns as a quantum superposition over n quantum neurons.  This 
is optimal in the sense that just reading each instance once cannot be done any 
faster than O(mn).  

pŜ



Recall – completion 

The recall capability of the quantum associative memory can be implemented 
using the quantum search algorithm due to Grover [36].  This algorithm has been 
traditionally considered as implementing a search for an item in an unsorted 
(quantum) database of N items, and it performs this task in O( N ) time, a feat 
that is impossible classically.  In the quantum computational setting, finding an 
item in the database means measuring the system and having the system collapse 
to the basis state which corresponds to the item in the database for which we are 
searching.  Now, we can equally well consider the algorithm as accomplishing the 
task of pattern completion in a quantum associative memory.  The basic idea of 
Grover's algorithm is to invert the phase of the desired basis state and then to 
invert all the basis states about the average amplitude of all the states.  Repetition 
of this process produces an increase in the amplitude of the desired basis state to 
near unity followed by a corresponding decrease in the amplitude of the desired 

state back to its original magnitude.  The process has a period of N
4
π  and 

thus after O( N ) operations, the system may be observed in the desired state 
with near certainty.  Define  

φÎ  = identity matrix except for  = -1 φφi

which inverts the phase of the basis state φ ,  
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which is often called the Walsh transform, and  
WIWG ˆˆˆˆ

0−=  
which effects the inversion about average.  Now to perform the search on a 
quantum database of size N, begin with the system in the 0  state and apply the 

 operator.  This initializes all the possible states to have the same amplitude.  
Finally, apply the operator (recall that operators are applied right to left), 

where τ is the state being sought, 

Ŵ

τIG ˆˆ

N
4
π  times and observe the system.  

Combining the algorithms 

A quantum associative memory can now be implemented by combining the two 
algorithms just discussed.  Define P̂  as an operator that implements the algorithm 
for memorizing patterns.  Then the operation of the memory can be described as 
follows.  Memorizing a set of patterns is simply  



0P̂=ψ  

with ψ  being a quantum superposition of appropriate basis states, one for each 
pattern.  Now, suppose we know n-k bits of a pattern and wish to recall the entire 
pattern.  We can use a modification of Grover's algorithm to complete the pattern, 
producing one of the stored patterns that matches on the n-k bits that we know.  
Thus, with 2n+1 neurons (qubits) the quantum associative memory can store up to 

2n patterns in O(mn) time and requires O( n2 ) time to recall a pattern.  This last 
bound is somewhat slower than desirable and may be improved with a non-unitary 
recall mechanism.  In fact, Grover’s search algorithm has been proven to be 
optimal in the number of steps required when unitarity is required.  Thus, we have 
another motivation for non-unitary processes in quantum neural computation.   

Recall – association 

Of course, in general, a quantum memory should not only be able to complete 
patterns but also to correct them.  In other words, given a noisy stimulus, the 
memory should produce the pattern most similar to that input.  This can be 
accomplished with further modification of the basic quantum memory model we 
have been discussing.  This modification involves the use of distributed queries 
and is presented in detail in [37].  Briefly, a distributed query is a distribution of 
the form 
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over the amplitudes of all possible states in the memory .  The  index p marks one 
of these states, p , which is the center of the distribution (real-valued amplitudes 
are distributed such that the maximal value occurs at this center, and the 
amplitudes of the other basis states decrease monotonically with Hamming 
distance from the center state).  This leads to the introduction of spurious 
memories into the recall process; however, counter to intuition the presence of 
these spurious memories may actually facilitate memory recall [37].  Table 3 
summarizes the analogies used in developing a quantum associative memory. 

 
Table 3.  Corresponding concepts from the domains of classical neural networks and 
quantum  associative memory  
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  It should be noted that the “neuron” in the first row of the Table 3 is strictly 
artificial and should not be considered as a model of its biological analog.  Really, 
as stated by Penrose  “...it is hard to see how one could usefully consider a 
quantum superposition consisting of one neuron firing, and simultaneously not 
firing” [2].  There are many other arguments against attributing any biological 
meaning to this scheme, so we should consider it only in the context of the 
development of artificial quantum associative memory. 
 
Implementation of QNN 
How can quantum neural networks be implemented as real physical devices?  
First, let us mention briefly some of the difficulties we might face in the 
development of a physical realization of quantum neural networks. 

Coherence.  One of the most difficult problems in the development of any 
quantum computational system is the maintainence the system’s coherence until  
the computation is complete [38].  This loss of coherence (decoherence) is due to 
the interaction of the quantum system with its environment.  In quantum 
cryptography this problem may be resolved using error-correcting codes [38].  
What about quantum neural networks?  It has been suggested that if fact these 
systems may be implemented before ordinary quantum computers will be realized 
because of significantly lower demands on the number of qubits necessary to 
represent network nodes and also because of the relatively low number of state 
transformations required during data processing in order to perform useful 
computation [35, 39].  Another approach to the problem of decoherence in 
quantum parallel distributed processing proposed by Chrisley excludes the use of 
superpositional states at all and suggests the use of quantum systems for 
implementing standard neural paradigms, i.e. multilayer neural systems trained 
with backpropagation learning [20].  This model, however, takes no advantage of 
the use of quantum parallelism.  A more promising approach to the 
implementation of quantum associative memory  based on the use of Grover’s 
algorithm is provided by bulk spin resonance computation (see below). 

Connections.  The high density of interconnections between processing elements 
is a major difficulty in the implementation of small-scale integration of 



computational systems.  In ordinary neurocomputers these connections are made 
via wires.  In (non-superpositional) quantum neurocomputers they are made via 
forces.  In the quantum associative memory model discussed here, these 
connections are due to the entanglement of qubits.  

Physical systems.  Now we can outline what kind of physical systems might be 
used to develop real quantum neural networks and how these systems address the 
problems listed above.  

• Nuclear Magnetic Resonance.  A promising approach to the implementation 
of quantum associative memory based on the use of Grover’s algorithm is 
provided by bulk spin resonance computation.  This technique can be 
performed using Nuclear Magnetic Resonance systems for which coherence 
times on the order of thousands of seconds have been observed.  Experimental 
verification of such an implementation has been done by Gershenfeld and 
Chuang [40] (among others),  who used NMR techniques and a solution of 
chloroform (CHCl3) molecules for the implementation of  Grover’s search on 
a system consisting of two qubits – the first qubit is decribed by the spin of the 
nucleus of the isotope C13, while second one is described by the spin of the 
proton (hydrogen nucleus).  Rather interestingly, this approach to quantum 
computation utilizes not a single quantum system but rather the statistical 
average of many copies of such a system (a collection of molecules).  It is 
precisely for this reason that the maintenance of system coherence times is 
considerably greater than for true quantum implementations.  Further, this 
technology is relatively mature, and in fact coherent computation on seven 
qubits using NMR has recently been demonstrated by Knill, et al. [41].  This 
technology is most promising in the short term, and good progress in this 
direction is possible in the early 21st century.   

• Quantum dots.  These quantum systems basically consist of a single electron 
trapped inside a cage of atoms.  These electrons can be influenced by short 
laser pulses.  Limitations to these systems which must be overcome include 1) 
short decoherence times due to the fact that the existence of the electron in its 
excited state lasts about a microsecond, and the required duration of a laser 
pulse is around a nanosecond; 2) the necessity of developing a technology to 
build computers from quantum dots of very small scale (10 atoms across); 
3) the necessity of developing special lasers capable of selectively influencing 
different groups of quantum dots with different wavelengths of light.  The use 
of quantum dots as the basis for the implementation of QNN is being 
investigated by Behrman and co-workers [16-17]. 

• Other systems.  There are many other physical systems which are now being 
considered as possible candidates for the implementation of quantum 
computers (and therefore possibly quantum neurocomputers).  These include 
various schemes of cavity QED (quantum electrodynamics of atoms in optical 
cavities), ion traps, SQUIDs (superconducting quantum interference devices), 



etc.  Each has its own advantages and shortcomings with regard to 
decoherence times, speed, possibility of miniaturization, etc.  More 
information about these technologies can be found in [4, 31]. 

Can QNN outperform classical neural networks? 
It is now known that quantum computing gives us unprecedented possibilities in 
solving problems beyond the abilities of classical computers.  For example Shor’s 
algorithm gives a polynomial solution (on a quantum computer) for the problem 
of prime factorization, which is believed to be classically intractable [42].  Also, 
as previously mentioned, Grover’s algorithm provides super-classical performance 
in searching an unsorted database. 
    What of quantum neural networks? Will they give us some advantages 
unattainable by either traditional von Neumann computation or classical artificial 
neural networks? Compared to the latter, quantum neural networks will probably 
have the following advantages: 

 
•  exponential memory capacity  [30]; 
•  higher  performance for lower number of hidden neurons [39]; 
•  faster learning [32]; 
• elimination of catastrophic forgetting due to the absence of pattern 

interference [32]; 
• single layer network solution of linearly inseparable problems [32]; 
• absence of wires [17]; 
• processing speed (1010 bits/s) [17]; 
• small scale  (1011 neurons/mm3) [17]; 
• higher stability and reliability [39]; 

 
These potential advantages of quantum neural networks are indeed compelling 
motivation for their development.  However, the more remote future possibilities 
of QNN may be even more exciting. 

Frontiers of QNN 

It is generally believed that the right hemisphere is responsible for spatial 
orientation, intuition, semantics etc., while the left hemisphere is responsible for 
temporal processing, logical thinking and syntax.  Given this view, it is very 
natural to consider that neurocomputers can be thought of as imitating our right 
brain function while von Neumann computers can be thought as as mimicing the 
functionality of our left brain.  Penrose characterizes these two types of 
computation as bottom-up and top-down respectively.  Nevertheless, he argues 
that higher brain functions such as consciousness cannot be modelled using just 
these types of computation.  The ideas discussed in this chapter introduce the 



possibility of combining the unique computational abilities of classical neural 
networks and quantum computation, thus producing a computational paradigm of 
incredible potential.  However, we make no effort here to relate any of these 
concepts to biological systems; in fact, much of what we have discussed is most 
likely very different from biological neural information processing.  Therefore it 
seems unlikely that quantum neural networks, at least in the context discussed 
here, could be considered a candidate for the basis of consciousness.  However, 
Perus has suggested that neural networks can be a “macroscopic replica  of 
quantum processing structures”.  If so, they “could be an interface between the 
macro-world of man’s environment and the micro-world of his non-local 
consciousness” [43].  Thus, it is not out of the realm of possibility that future 
models of quantum neural networks may afterall provide significant insight into 
the workings of the mind and brain. 
    There are some proponents for the idea that QNN may be developed that have 
abilities beyond the restrictions imposed by the Church-Turing thesis.  Simply put, 
according to this thesis, all existing computers are equivalent in computational 
power to the Universal Turing Machine.  Moreover, all algorithmic processes we 
can perform in our mind can be realized on this machine and vice versa.  No 
existing neurocomputers, nor any quantum computers theorized to date can escape 
the bounds imposed by the Church-Turing thesis.  But what about quantum neural 
networks?  Dan Cutting has posed the query, “Would quantum neural networks be 
subject to the decidability constraints of the Church-Turing thesis?” [39].  For 
existing models of QNN the answer seems surely to be “no”, but some speculative 
physical systems (wormholes, for example) are discussed as possible candidates 
for the basis of QNN that could exceed these bounds [39].  This  is a very 
intriguing question, and it is a challenge for the future to try to develop a theory of 
quantum neural networks that will give us completely new computational abilities 
for tackling problems that cannot now be solved even in principle.  In the process 
we shall certainly be examining the concept of computation in a very different 
light and in so doing will be likely to make discoveries that to this point have been 
overlooked. 

Acknowledgements 

We are grateful to Professor Nikola Kasabov for his invitation to prepare this 
chapter.  We also acknowledge useful discussions with Mitja Perus, Tony 
Martinez, Ron Chrisley, Dan Cutting, Elizabeth Behrman, and Subhash Kak on 
various aspects of quantum neural computation. 

 

REFERENCES 

 



1. Feynman, R. (1986) Quantum mechanical computers. Foundations of Physics, vol. 16,   
pp.507- 531.  

2. Penrose, R. (1994) Shadows of the Mind. A search for the missing science of 
consciousness. Oxford University Press, New York, Oxford.   

3. Hameroff, S. and Rasmussen, S. (1990) Microtubule Automata: Sub-Neural 
Information Processing in Biological Neural Networks. In: Theoretical Aspects of 
Neurocomputing, M. Novak and E. Pelikan (Eds.), World Scientific, Singapore, pp.3-
12. 

4. Brooks, M. (Ed.) (1999) Quantum computing and communications, Springer-Verlag, 
Berlin/Heidelberg. 

5.   Deutsch, D. (1985) Quantum theory, the Church-Turing principle and the universal 
quantum  computer, Proceedings of the Royal Society of London, A400, pp.97-117. 

6.  Everett, H. (1957) “Relative state” formulation of quantum mechanics. Review of 
modern  physics, vol.29, pp.454-462. 

7.  Dirac, P.A.M. (1958) The principles of quantum mechanics. Oxford, Claredon Press.  
8.  Domany, E., van Hemmen, J.L., and Schulten, K. (Eds.) (1992) Models of neural 

networks, Springer-Verlag. Berlin, Heidelberg, New York. 
9.  Hopfield, J.J. (1982)  Neural networks and physical systems with emergent collective 

computational abilities, Proceedings of the National Academy of Sciences USA, 
vol.79, pp.2554-2558. 

10.  Feynman, R.P.,  Leighton, R.B., and Sands, M. (1965) The Feynman Lectures on 
Physics, vol. 3, Addison-Wesley Publishing Company, Massachusetts. 

11.  Vedral, V., Plenio, M.B., Rippin, M.A., and Knight, P.L. (1997)  Quantifying 
Entanglement.  Physical Review Letters, vol. 78 no. 12, pp. 2275-2279. 

12.  Jozsa, R. (1997)  Entanglement and Quantum Computation.  Geometric Issues in the 
Foundations of Science, S.Hugget, L.Mason, K.P. Tod, T.Tsou and N.M.J. 
Woodhouse (Eds.), Oxford University Press. 

13.  Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integrals. 
McGraw-Hill, New-York. 

14.  Perus, M. (1996) Neuro-Quantum parallelism in brain-mind and computers, 
Informatica, vol. 20, pp.173-183. 

15.  Haken, H. (1991) Synergetic computers for pattern recognition, and their control by 
attention parameter. In Neurocomputers and Attention II: connectionism and 
neurocomputers, V.I. Kryukov and A. Holden (Eds.), Manchester University Press, 
UK, pp 551-556. 

16.  Behrman, E.C., Niemel, J., Steck, J.E., and Skinner, S.R. (1996) A quantum dot neural 
network. Proceedings of the 4th Workshop on Physics of Computation, Boston, pp.22-
24, November. 

17.  Behrman, E.C., Steck, J.E., and Skinner, S.R. (1999) A spatial quantum neural 
computer., Proceedings of the International Joint Conference on Neural Networks, to 
appear.  

18.  Goertzel, B. Quantum Neural Networks. http://goertzel/org/ben/quantnet.html 
19.  Chrisley, R.L. (1995) Quantum learning. In Pylkkänen, P., and Pylkkö, P. (Eds.) New 

directions in cognitive science: Proceedings of the international symposium, 



Saariselka, 4-9 August, Lapland, Finland, pp.77-89, Helsinki, Finnish Association of 
Artificial Intelligence 

20.  Chrisley, R.L. (1997) Learning in Non-superpositional Quantum Neurocomputers, In 
Pylkkänen, P., and Pylkkö, P. (Eds.) Brain, Mind and Physics. IOS Press, Amsterdam, 
pp 126-139. 

21.  Deutsch, D. (1997) The fabric of reality. Alen Lane: The Penguin Press. 
22.  Bishop, C.H. (1995) Neural networks for pattern recognition, Clarendon Press, 

Oxford.  
23.  Cotrell, G.W., Munro, P., and Zipser D. (1985)  “Learning internal representation 

from gray-scale images: An example of extensional programming”, Proceedings of the 
Ninth Annual Conference of the Cognitive Science Society, Irvine, CS. 

24.  Gasquel, J.-D., Moobed, B., and Weinfeld, M. (1994) “An internal mechanism for 
detecting parasite attractors in a Hopfield network”, Neural Computation, vol.6, 
pp.902-915. 

25.  Schwenk, H., and Milgram, M. (1994) Structured diabolo-networks for hand-written 
character recognition. International Conference on Artificial Neural Networks, 2, 
Sorrento, Italy, pp.985-988. 

26.  Ezhov, A.A., and Vvedensky, V.L. (1996) Object generation with neural networks 
(when spurious memories are useful), Neural Networks, vol. 9, pp.1491-1495. 

27.  Müller, B., Reinhardt, J., and Strickland, M.T. (1995) Neural Networks, Springer-
Verlag, Berlin, Heidelberg. 

28.  Ezhov, A.A., Kalambet, Yu.A., and Knizhnikova, L.A. (1990) “Neural networks: 
general properties and particular applications”. In: Neural Networks: Theory and 
Architectures. V.I. Kryukov and A. Holden (Eds.) , Manchester University Press, 
Manchester, UK, pp.39-47. 

29.  Ventura, D. and Martinez, T. (1999) Initializing the amplitude distribution of a 
quantum state”, submitted to Foundations of Physics Letters.  

30.  Ventura, D. and Martinez, T. (1998) Quantum associative memory with exponential 
capacity, Proceedings of the International Joint Conference on Neural Networks, 
pp.509-513. 

31.  Milburn, G.J. (1998) The Feynman Processor, Perseus Books, Reading MA. 
32.  Menneer, T. and Narayanan, A. (1995) Quantum-inspired neural networks. Technical 

report R329, Department of Computer Science, University of Exeter, UK 
33.  Ventura, D. and Martinez, T. (1999) A quantum associative memory based on 

Grover’s algorithm. Proceedings of the International Conference on Artificial Neural 
Networks and Genetic Algorithms, pp.22-27.  

34.  Ventura, D. (1998) Artificial associative memory using quantum processes. 
Proceedings of the International Conference on Computational Intelligence and 
Neuroscience, vol.2, pp.218-221. 

35.  Ventura, D. and Martinez, T.(1999) Quantum associative memory. Information 
Sciences, in press. 

36.  Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. 
Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, 
pp.212-219. 



37.  Ezhov, A.A.,Nifanova, A.V., and Ventura, D. (1999) Quantum Associative Memory 
with Distributed Queries, in preparation. 

38.  Gruska, J. (1999) Quantum computing, McGraw-Hill, UK. 
39.  Cutting, D.(1999) Would quantum neural networks be subject to the decidability 

constraints of the Church-Turing thesis? Neural Network World, N.1-2, pp.163-168 
40.  Gershenfeld, N.A. and Chuang, I.L. (1996)  Bulk Spin Resonance Quantum 

Computation. Science, 257 (January 17), p.350. 
41.  Knill, E. , Laflamme, R., Martinez, R. and Tseng, C.-H. (1999)  A Cat-State 

Benchmark on a Seven Bit Quantum Computer, Los Alamos pre-print archive, 
http://xxx.lanl.gov, quant-ph/9908051 

42.  Shor, P.W. (1997)  Polynomial-time algorithm for prime factorization and discrete 
lpgarithms on a quantum computer, SIAM Journal on Computing, vol.26, pp.1484-
1509.  

43.  Perus, M. (1997) Neural networks, quantum systems and consciousness. Science 
Tribune, Article - May. http://www.tribunes.com/tribune/art97/peru1.htm 

http://xxx.lanl.gov/
http://www.tribunes.com/tribune/art97/peru1.htm

	Why quantum neural networks?
	Neural networks: toward quantum analogs
	Some Quantum Concepts
	Interpretations of quantum theory
	How pattern recognition leads us to quantum neural networks
	Many universes approach

	Quantum associative memory
	Memorization
	Recall – completion
	Combining the algorithms
	Recall – association
	
	
	
	
	Implementation of QNN






	Can QNN outperform classical neural networks?
	Frontiers of QNN
	Acknowledgements

