带小数点的数如何进行进制转换

阅读: 评论:0

2024年2月4日发(作者:)

带小数点的数如何进行进制转换

十进制数转换为二进制数、八进制数、十六进制数的方法:

二进制数、八进制数、十六进制数转换为十进制数的方法:按权展开求和法

1.二进制与十进制间的相互转换:

(1)二进制转十进制

方法:“按权展开求和”

例: (1011.01)2 =(1×23+0×22+1×21+1×20+0×2-1+1×2-2 )10

=(8+0+2+1+0+0.25)10

=(11.25)10

规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依奖递增,而十

分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。

注意:不是任何一个十进制小数都能转换成有限位的二进制数。

(2)十进制转二进制

· 十进制整数转二进制数:“除以2取余,逆序排列”(短除反取余法)

例: (89)10 =(1011001)2

2 89

2 44 ……1

2 22 ……0

2 11 ……0

2 5 ……1

2 2 ……1

2 1 ……0

0 ……1

· 十进制小数转二进制数:“乘以2取整,顺序排列”(乘2取整法)

例: (0.625)10= (0.101)2

0.625

X 2

1.25 1

X 2

0.5 0

X 2

1.0 1

2.八进制与二进制的转换:

二进制数转换成八进制数:从小数点开始,整数部分向左、小数部分向右,每3位为一组用一位八进制数的数字表示,不足3位的要用“0”补足3位,就得到一个八进制数。

八进制数转换成二进制数:把每一个八进制数转换成3位的二进制数,就得到一个二进制数。

例:将八进制的37.416转换成二进制数:

3 7 . 4 1 6

011 111 .100 001 110

即:(37.416)8 =(11111.10000111)2

例:将二进制的10110.0011 转换成八进制:

0 1 0 1 1 0 . 0 0 1 1 0 0

2 6 . 1 4

即:(10110.011)2 = (26.14)8

3.十六进制与二进制的转换:

二进制数转换成十六进制数:从小数点开始,整数部分向左、小数部分向右,每4位为一组用一位十六进制数的数字表示,不足4位的要用“0”补足4位,就得到一个十六进制数。

十六进制数转换成二进制数:把每一个十六进制数转换成4位的二进制数,就得到一个二进制数。

例:将十六进制数5DF.9 转换成二进制:

5 D F . 9

0101 1101 1111 .1001

即:(5DF.9)16 =(1.1001)2

例:将二进制数1100001.111 转换成十六进制:

0110 0001 . 1110

6 1 . E

即:(1100001.111)2 =(61.E)16

注意:以上所说的二进制数均是无符号的数。这些数的范围如下表:

无符号位二进制数位数 数值范围 十六进制范围表示法

8位二进制数 0~255 (255=28-1) 00~0FFH

16位二进制数 0~65535 (65535=216-1) 0000H~0FFFFH

32位二进制数 0~232-1 00000000H~0FFFFFFFFH

带小数点的数如何进行进制转换

本文发布于:2024-02-04 02:03:01,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170698338152017.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:二进制   八进制   数字   展开   范围   部分   小数点   转换
留言与评论(共有 0 条评论)
   
验证码:
排行榜

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23