七夕节,我用Python写了一个婚介模型

阅读: 评论:0

七夕节,我用Python写了一个婚介模型

七夕节,我用Python写了一个婚介模型

先声明一下:本文纯属七夕应景娱乐之作。如果有人因为遵循本模型提出的择偶理论而导致失恋或单身,除了同情,我不能补偿更多。

在中国的传统节日里,七夕可能是起源最神秘、内涵最深刻的一个了。当然,这不是本文的重点,我们的核心问题是:在七夕这个特有纪念意义的日子,你真的想好了要向TA表白吗?TA真的是你唯一正确的选择吗?这个婚介模型,也许对你有一些启发。

我的婚介所生意兴隆,无数想找到理想伴侣的单身人士都来光顾。根据颜值、人品、能力、财富等因素,我给每位客户确定了一个素质指数(Quality Index),简写为qidx。统计发现,qidx呈现均值8.0、标准差0.5正态分布。

下面是1万客户的qidx统计分布图,可以看出绝大多数单身人士的qidx位于7.0~9.0之间,评价较为负面的和非常优秀的,都属于少数派。

import numpy as np
import matplotlib.pyplot as pltsingles = al(loc=8.0, scale=0.5, size=10000)
plt.hist(singles, bins=8, histtype='step')
plt.show()


一般情况下,我的客户缴费1次,将获得10次选择机会。我向客户推荐目标的策略基于“门当户对”,总是选择和客户的qidx相适应的异性,具体说就是以客户的qidx为均值,以0.1的方差,按照正态分布随机生成。

通常,客户有两种方式从我为他们推荐的目标中做出选择。第一种是基于传统的择偶观念,具体规则如下.

  1. 有10%的客户会对当前的推荐目标一见钟情,不在意双方的qidx是否匹配
  2. 如果当前推荐目标的qidx比客户高,但不超过0.2,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.35升至是0.8
  3. 如果当前推荐目标的qidx比客户高0.2以上,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.55升至是1.0
  4. 如果当前推荐目标的qidx比客户低,但不超过0.2,客户选择当前推荐目标的概率,会随剩余选择机会的减少而增加,大约从0.25升至0.7
  5. 如果当前推荐目标的qidx比客户低0.2以上,客户选择当前目标的概率,会随剩余选择机会的减少而增加,大约从0升至0.18

第二种匹配方式则是基于“麦穗理论”,听起来很高大上。这里省略了关于麦穗理论的讲解,感兴趣的同学可以自行检索。具体说,就是客户在前4次的推荐中,不做出选择,只记下其中的最高的qidx;从第5次开始,只要遇到大于或等于前4次最高qidx的推荐目标,就做出选择。

下面,我分别用两种匹配方式为1万名顾客选择配偶,结果会怎样呢?

# -*- encoding: utf-8 -*-import numpy as npclass Single:def __init__(self, qidx, times):self.times = times # 婚介所提供的匹配次数unter = 0 # 当前匹配次数self.qidx = qidx # 客户的qidxself.spouse = None # 匹配成功的配偶的qidxself.histroy = list() # 基于麦穗理论的前times/e次的推荐对象的qidxdef math_classical(self, spouse):unter += 1if np.random.random() < 0.1:self.spouse = spouseif spouse - self.qidx >= 0.2:if np.random.random() < 1-0.05*(unter):self.spouse = spouseelif spouse - self.qidx > 0:if np.random.random() < 0.8-0.05*(unter):self.spouse = spouseelif self.qidx - spouse >= 0.2:if np.random.random() < 0.18-0.02*(unter):self.spouse = spouseelif self.qidx - spouse >= 0:if np.random.random() < 0.7-0.05*(unter):self.spouse = spousedef match_technical(self, spouse):unter += unter < self.times/np.e:self.histroy.append(spouse)elif spouse >= max(self.histroy):self.spouse = spousedef main(math_mode, total=10000, times=10):# 生成总数为total的客户,其qidx有正态随机函数生成singles = [Single(al(loc=8.0, scale=0.5), times) for i in range(total)]for p in singles:for i in range(10):unter < 10 and not p.spouse:spouse = al(loc=p.qidx, scale=0.1)getattr(p, math_mode)(spouse)matched = np.array([(p.qidx, p.spouse) for p in singles if p.spouse])diff = matched[:,0] - matched[:,1]print('----------------------------------')print('成功匹配%d人,成功率%0.2f%%'%(matched.shape[0], matched.shape[0]*100/total))print('客户qidx均值%0.2f,配偶均值%0.2f'%(np.sum(matched[:,0])/matched.shape[0], np.sum(matched[:,1])/matched.shape[0]))print('匹配方差%0.2f,匹配标准差%0.2f'%(diff.var(), diff.std()))print()if __name__ == '__main__':print('基于传统方式择偶的统计结果')main('math_classical')print('基于麦穗理论择偶的统计结果')main('match_technical')    

比较两种方案的匹配成功率、匹配成功的客户的平均qidx、匹配成功的客户配偶的平均qidx、客户和配偶的qidx的方差等,你会发现,这个结果真的有点意思。

基于传统方式择偶的统计结果
----------------------------------
成功匹配10000人,成功率100.00%
客户qidx均值8.00,配偶均值8.02
匹配方差0.01,匹配标准差0.10基于麦穗理论择偶的统计结果
----------------------------------
成功匹配7138人,成功率71.38%
客户qidx均值8.00,配偶均值8.11
匹配方差0.00,匹配标准差0.07

结论:

  1. 基于传统方式的择偶,成功率更高(100% VS 71.38%);
  2. 基于麦穗理论择偶,配偶素质指数更高(8.11 VS 8.02);
  3. 基于麦穗理论择偶,双方qidx差的标准差更小(0.07 VS 0.10),这意味着双方匹配更好。

本文发布于:2024-01-27 17:22:07,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17063473271623.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:我用   写了   婚介   模型   七夕节
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23