题面由我校翻译组激情制造。
有一个云服务 API text{API} API 来帮助用户存储历史时间戳。
每个用户的数据结构最初是一个空堆栈。
每次向 API text{API} API 发送带有整数 x x x (表示当前时间戳)的请求时,服务器都会将 x x x 附加到堆栈的末尾。
若 x x x 小于堆栈中存储的前一个时间戳时,服务器将认为输入是错误的,将加入前一个时间戳入堆栈而不是 x x x。
您已经发布了 n n n 次 API text{API} API,您的请求时间戳在第 i i i 次调用中是 x i x_i xi。
然而,网络已经失控。
服务器可能以任意顺序接收您的请求,甚至可能错过某些请求。
知道了这个问题,您要求随叫随到的工程师查看数据库中的堆栈。
假设服务器正好收到 k k k 个请求,那么它可能有多少不同的堆栈?
第一行包含单个整数 T T T ( 1 ≤ T ≤ 100 ) (1≤T≤100) (1≤T≤100),测试用例的数量。对于每个测试用例:
输入的第一行包含单个整数 n n n ( 1 ≤ n ≤ 3000 ) (1≤n≤3000) (1≤n≤3000),表示请求总数。
第二行包含 n n n 个整数 x 1 , x 2 , … , x n x_1,x_2,dots,x_n x1,x2,…,xn ( 1 ≤ x i ≤ 1 0 9 ) (1≤x_i≤10^9) (1≤xi≤109),表示每个请求的时间戳。
可以保证所有 n n n 的和不超过 30000 30000 30000。
对于每个测试用例,输出 n n n 行,其中第 i i i ( 1 ≤ i ≤ n ) (1≤i≤n) (1≤i≤n) 行包含一个整数,表示 k = i k=i k=i 时不同堆栈的数量。
请注意,答案可能非常大,所以请打印它模 1 0 9 + 7 10^9+7 109+7 代替。
2
3
1 2 3
3
2 3 3
3
5
5
2
2
2
在第一个示例中:
当 k = 1 k=1 k=1 时,栈可以是 [ 1 ] , [ 2 ] , [ 3 ] [1],[2],[3] [1],[2],[3]。
当 k = 2 k=2 k=2 时,栈可以是 [ 1 , 2 ] , [ 1 , 3 ] , [ 2 , 2 ] , [ 2 , 3 ] , [ 3 , 3 ] [1,2],[1,3],[2,2],[2,3],[3,3] [1,2],[1,3],[2,2],[2,3],[3,3]。
当 k = 3 k=3 k=3 时,栈可以是 [ 1 , 2 , 3 ] , [ 1 , 3 , 3 ] , [ 2 , 2 , 3 ] , [ 2 , 3 , 3 ] , [ 3 , 3 , 3 ] [1,2,3],[1,3,3],[2,2,3],[2,3,3],[3,3,3] [1,2,3],[1,3,3],[2,2,3],[2,3,3],[3,3,3]。
在第二个示例中:
当 k = 1 k=1 k=1 时,栈可以是 [ 2 ] , [ 3 ] [2],[3] [2],[3]。
当 k = 2 k=2 k=2 时,栈可以是 [ 2 , 3 ] , [ 3 , 3 ] [2,3],[3,3] [2,3],[3,3]。
当 k = 3 k=3 k=3 时,栈可以是 [ 2 , 3 , 3 ] , [ 3 , 3 , 3 ] [2,3,3],[3,3,3] [2,3,3],[3,3,3]。
首先发现我们不关心值的大小,只关心排名,而且貌似需要嗯造到动态规划状态里,所以需要离散化。
我们考虑转换问题,发现类似于填充一个不下降子序列,但是有点限制。
接下来考虑动态规划,我们设 f i , j f_{i,j} fi,j 表示填到第 i i i 位,末尾为 j j j。
边界比较清楚, f 1 , j = 1 f_{1,j}=1 f1,j=1。
我们发现这个填充并不是没有条件的,事实上,我们发现 i ≤ t j ileq t_j i≤tj, t j t_j tj 表示有多少数字小于等于 j j j,因为我们在前面填出的多的 j j j 本质是拿比 j j j 小的数字代替,因此怎么填也填不到 t j t_j tj 后面。
我们不难得到转移方程:
f i , j = ∑ k = 1 j f i − 1 , k ( i ≤ t j ) f_{i,j}=sum_{k=1}^jf_{i-1,k}(ileq t_j) fi,j=k=1∑jfi−1,k(i≤tj)
条件不成立则值为 0 0 0。
不得不说,这个还是比较好想的,但是我们需要优化,加个前缀和即可。
我们用定义一个 s u m sum sum,有:
s u m i , j = ∑ k = 1 j f i , j sum_{i,j}=sum_{k=1}^j f_{i,j} sumi,j=k=1∑jfi,j
以上方程可以写成:
f i , j = s u m i − 1 , j ( i ≤ t j ) f_{i,j}=sum_{i-1,j}(ileq t_j) fi,j=sumi−1,j(i≤tj)
对于第 i i i 个输出:
a n s i = ∑ j = 1 M f i , j ans_i=sum_{j=1}^M f_{i,j} ansi=j=1∑Mfi,j
这里的 M M M 表示离散化之后的最大值。
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL N=3e3+5;
const LL mod=1e9+7;
LL T,n,x[N],a[N],t[N],f[N][N],sum[N][N],cnt,ans[N];
int main()
{scanf("%lld",&T);while(T--){scanf("%lld",&n);memset(t,0,sizeof(t));memset(f,0,sizeof(f));memset(sum,0,sizeof(sum));memset(ans,0,sizeof(ans));for(int i=1;i<=n;i++){scanf("%lld",&x[i]);}sort(x+1,x+n+1);cnt=0;for(int i=1;i<=n;i++){if(x[i]!=x[i-1])cnt++;a[i]=cnt;t[cnt]++;}for(int i=1;i<=cnt;i++)t[i]+=t[i-1];for(int i=1;i<=n;i++){for(int j=1;j<=cnt;j++){if(i==1)f[i][j]=1;else if(i<=t[j])f[i][j]=sum[i-1][j];else f[i][j]=0;ans[i]=(ans[i]+f[i][j])%mod;sum[i][j]=(sum[i][j-1]+f[i][j])%mod;}}for(int i=1;i<=n;i++){printf("%lldn",ans[i]);}}
}
如果你看完了整个文章,下面有投票可以玩,再奖励你看一个科比。
本文发布于:2024-01-27 17:35:31,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/17063481301679.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |