目录
一、高偏差(欠拟合)(high bias)
1.1、表现
1.2 、解决方法 — Feature Mapping for Polynomial Regression
二、高方差(过拟合)(variance)
2.1、表现
2.2、解决方法 — 正则化
% 1.1、无正则化的线性回归的模型
lambda = 0;
[theta] = trainLinearReg([ones(m, 1) X], y, lambda);
% 1.2、无正则化的线性回归的学习情况
[error_train, error_val] = ...learningCurve([ones(m, 1) X], y, ...[ones(size(Xval, 1), 1) Xval], yval, ...lambda);
lambda = 0;
[theta] = trainLinearReg(X_poly, y, lambda);
[error_train,error_test ,error_val] = ...learningCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest,lambda);
% Plot training data and fit
figure,subplot(1,2,1)
plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
plotFit(min(X), max(X), mu, sigma, theta, p);
xlabel('Change in water level (x)');
ylabel('Water flowing out of the dam (y)');
title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
legend('Orgin data','polynomial regression fit p=8')subplot(1,2,2)
plot(1:m, error_train,'rx', 1:m, error_val,'g--',1:m, error_test,'MarkerSize', 10, 'LineWidth', 1.5);
title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
xlabel('Number of training examples')
ylabel('Error')
axis([0 13 0 100])
legend('Train', 'Cross Validation','Test')
如上图所示,当样本容量增加时,测试误差、交叉验证误差都会下降,模型性能相对会提高。
function [lambda_vec, error_train, error_val,error_test] = ...validationCurve2(X, y, Xval, yval,Xtest, ytest)% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);
error_test = zeros(length(lambda_vec), 1);for i=1:size(lambda_vec, 1)theta = trainLinearReg(X, y, lambda_vec(i));error_train(i) = linearRegCostFunction(X, y, theta, 0);error_val(i) = linearRegCostFunction(Xval, yval, theta, 0);error_test(i) = linearRegCostFunction(Xtest, ytest, theta, 0);
end% =========================================================================end
[lambda_vec, error_train, error_val,error_test] = ...validationCurve2(X_poly, y, X_poly_val, yval,X_poly_test, ytest);close all;
plot(lambda_vec, error_train, lambda_vec, error_val, lambda_vec, error_test);
legend('Train', 'Cross Validation','Test');
xlabel('lambda');
ylabel('Error');
本文发布于:2024-01-27 22:44:17,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/17063666543097.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |