【3D 图像分割】基于 Pytorch 的 3D 图像分割2(基础数据流篇)

阅读: 评论:0

【3D 图像分割】基于 Pytorch 的 3D 图像分割2(基础数据流篇)

【3D 图像分割】基于 Pytorch 的 3D 图像分割2(基础数据流篇)

构建pytorch训练模型读取的数据,是有模版可以参考的,是有套路的,这点相信使用过的人都知道。我也会给出一个套路的模版,方便学习和查询。

同时,也可以先去参考学习之前的一篇较为简单的3D分类任务的数据构建方法,链接在这里:【3D图像分类】基于Pytorch的3D立体图像分类1(基础篇)

到了本篇训练的数据构建,相比于上面参考的这篇博客,就多了一丢丢的复杂。那就是有了原始图、mask图后,又多了一个结节目标的中心点坐标和半径。

那就意味着,我们读取到的原始图、mask图三维信息后,不能直接放进去训练,因为尺寸也不一样,背景信息太多了。那就需要根据结节目标的坐标信息,先进行裁剪,裁剪出固定大小区域的目标图,然后再放进去训练。

至此,整个过程基本上就清晰了。

  1. 获取原始图、mask图、结节目标的中心点坐标和半径
  2. 裁剪操作,取出固定大小的输入信息

为了方便调试,和查看裁剪的对不对,那就配合一个查看的操作,这样就完美了

一、训练数据预处理

Luna16的原始数据相对来说是较为复杂的,不够直观,这部分的数据处理如果放到训练阶段来做,将会耗费很多的时间和内存资源。所以,有必要将这部分较为复杂的数据,预先处理成较为简单的、直观的、一一对应的数据关系。

LUNA16数据集中的888个CT图像被均匀的划分为10个子集,分别存放在subset0-subset9这10个文件夹中,该数据集的图像存储方式为MetaImage(mhd/raw)的格式,每个mhd文件都存储着一个单独对应的raw文件。

  • raw二进制文件,存放像素数据;
  • mhd文件存放信息

这两部分是同时存在,表示一个完整的信息。对于上述关于Luna16的处理代码,可以参考【小目标】vnet 肺结节 3d图像分割中作者对这块的处理即可。针对这块,我做个简要的处理步骤介绍:

  1. 根据结节标注信息,获取标注结节的坐标信息,生成mask 3维数据块,尺寸和原始CT图像大小一致;
  2. 根据肺区分割图,和原始的CT图像处理,得到去除肺区外,只留下肺实质的信息,对mask同样处理;
  3. 根据x、y、z三个方向的space信息,进行resample操作,将原本各个维度像素点代表的不同尺度,给resample1mm单位;
  4. 最后再从resample后的mask中,获取结节的坐标信息,保存到csv文件呢。

至此,一个较为复杂的流程下,终于把他们一一的对应关系给整理顺畅了。本篇博文基本上是对作者视频部分的二次整理,和微微的改进与测试、可视化等等的工作。后续等训练了,发现了问题,再解决问题,进行优化。

到这里,训练所需要的文件基本上整理出来了,路径结构如下:

sk_output
├── bbox_annos├── bbox_annos.csv├── bbox_image├── subset0├── source_1.npy├── source_2.npy└── ...├── subset1├── source_103.npy├── source_104.npy└── ...├── subset2├── source_205.npy├── source_206.npy└── ...├── subset3├── source_307.npy├── source_308.npy└── ...└── ...├── bbox_mask├── subset0├── source_1.npy├── source_2.npy└── ...├── subset1├── source_103.npy├── source_104.npy└── ...├── subset2├── source_205.npy├── source_206.npy└── ...├── subset3├── source_307.npy├── source_308.npy└── ...└── ...

其中,

  1. bbox_annos.csv:记录了文件名,及标记结节中心点坐标和半径;
  2. bbox_image.npy的图像信息,元素大小为0-255
  3. bbox_mask.npymask信息,和bbox_image内对应文件数量相等,单个npy文件shape一致。只有结节一个目标,元素值为0 or 1

二、构建myDataset类

构建这个数据集,其实也就是那么几件事:

  1. 读取原始图和mask图;
  2. 获取标记结节的中心点坐标信息,这里是从csv文件中获取的;
  3. 根据结节中心点坐标信息,再根据要裁剪的patch的大小,确定好立体举行的最小、最大坐标;
  4. 裁剪出patch的区域

至此,裁剪下来的patch,就是包含有结节的数组了,包括了图像数组,和标注mask数组,一一对应,用于训练。类中函数:

  1. getAnnotations 函数,需要从csv文件中获取文件名和结节对应坐标,最后存储为一个字典;
  2. getNpyFile_Path 函数,获取imagemask文件路径;
  3. get_annos_label 函数,获取文件对应的结节中心点标注信息。

如下,就是整个代码过程:

import os
import torch
 as nn
import torch.utils.data
from torch.utils.data import Dataset
import numpy as np
import cv2
from tqdm import tqdm
import random
import matplotlib.pyplot as pltdef getAnnotations(csv_file):content = pd.read_csv(csv_file, delimiter=',', header=None,index_col=False)names = content[1].valuescoors = content[2].valuesdict_tp = {}for n, c in zip(names, coors):c_list = eval(c)if c_list:print(n, c_list, type(c_list))dict_tp[n] = c_listreturn dict_tpclass myDataset(Dataset):def __init__(self, csv_file, data_path, label_path, crop_size=(16, 96, 96)):""":param csv_file: 记录文件名和结节标记中心点坐标+半径的信息:param data_path: 存储原始CT图像:param label_path: 存储mask图像:param crop_size:   裁剪的尺寸"""self.annosNameCenter_list = getAnnotations(csv_file)self.dataFile_paths = NpyFile_Path(data_path)   # 图的path列表self.labelFile_paths = NpyFile_Path(label_path)   # 标签的path列表self.annos_img_info =  = _annos_label(self.dataFile_paths)  # 图的位置列表 输入进去  吐出  结节附近的图的【【图片位置,结节中心,半径】列表】p_size = p_size_z, p_size_h, p_size_w = crop_sizedef __getitem__(self, index):img_all = self.annos_img[index]     # 0 - image_path ; 1 - 结节的中心; 2 - 结节的半径label_all = self.annos_label[index]path, zyx_centerCoor, r = img_allimg = np.load

本文发布于:2024-01-28 01:27:07,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17063764343832.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:图像   数据流   基础   Pytorch
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23