Pandas 处理 时间序列数据

阅读: 评论:0

Pandas 处理 时间序列数据

Pandas 处理 时间序列数据

目录

  • 一、Pandas 时间序列数据处理
    • 1.1 知识点
  • 二、创建时间对象
    • 2.1 创建时间戳
    • 2.2 创建时间段
    • 2.3 创建时间元素的 Series
    • 2.4 创建时间索引
      • 2.4.1 大量的的时间戳的索引
    • 2.5 创建以时间为索引的 Series 对象
  • 三、时间索引对象处理
    • 3.1 时间戳为索引——查找
    • 3.2 时间段为索引——查找
    • 3.3 切片
    • 3.4 移动
    • 3.5 重采样
      • 3.5.1 下采样
      • 3.5.2 上采样
  • 四、时间的算术方法
    • 4.1 常用时间的算术规则
      • 4.1.1 偏移也同样适用于时间索引
      • 4.1.2 常用时间系列频率参数
      • 4.1.3 频率参数指定后缀
    • 4.2 下采样聚合
  • 五、实验总结

 

一、Pandas 时间序列数据处理

Pandas 是非常著名的开源数据处理库

  • 我们可以通过它完成对数据集进行快速读取、转换、过滤、分析等一系列操作。
  • 同样,Pandas 已经被证明为是非常强大的用于处理时间序列数据的工具

 

1.1 知识点

  • 创建时间对象
  • 时间索引对象
  • 时间算术方法

 
 
 

二、创建时间对象

在 Pandas 中关于时间序列的常见对象有 6 种,分别是 :

  1. Timestamp(时间戳)
  2. DatetimeIndex(时间戳索引)
  3. Period(时间段)
  4. PeriodIndex(时间段索引)
  5. 以时间为元素的 Series 和
  6. 以时间索引的 DataFrame
     

2.1 创建时间戳

  • Timestamp时间戳表示:时间轴上的某一点

以下不同代码都可以生成相同时间戳。

  1. 创建时间为 2018 年 10 月 1 日的时间戳。
import pandas as pd
pd.Timestamp(2018, 10, 1)
  1. 也可以使创建的时间精确到时分秒。
pd.Timestamp("2018-10-1 10:00:1")
from datetime import datetime
pd.Timestamp(datetime(2018, 10, 1))

 

2.2 创建时间段

  • Period 时间段表示:时间轴上的某一区间

以下代码都可以生成相同时间段
1.

pd.Period('2018-10')

Period() 函数后面:

  • 通常有两个参数,第二个 freq 参数决定时间段的分割长度
  1. 创建频率为日的时间段。
pd.Period('2018-10', freq='D')

 

2.3 创建时间元素的 Series

Pandas 中常用 to_datetime() 函数:

  • 可以创建以时间为元素Series
  1. 创建一个 Series,以三个时间的字符串作为元素
df = ['2018-08-01', '2018-09-01', '2018-10-01']
pd.to_datetime(df)
  1. 可以使用多种方法创建时间元素的 Series。
df = pd.Series(['Sep 30, 2018', '2018-10-1', None])
pd.to_datetime(df)
df = pd.DataFrame({'year': [2017, 2018],'month': [9, 10],'day': [30, 1],'hour': [23, 0]})
pd.to_datetime(df)

 
 

2.4 创建时间索引

要生成带有时间戳的索引

  • 可以使用 DatetimeIndex() 构造函数
  • 传入列表或 Series 对象
dates = ['2018-08-01', '2018-09-01', '2018-10-01']
index = pd.DatetimeIndex(dates)
index

 

2.4.1 大量的的时间戳的索引

实际运用中我们经常需要大量的的时间戳的索引。

  • 可以使用 date_range()bdate_range()
  • 批量创建相同时间间隔的时间戳索引
  1. 创建以 2018 年 9 月 30 日为开始250 条时间索引
    • 相邻索引间隔时间长度为一个月
index = pd.date_range('2018-9-30', periods=250, freq='M')
index

  1. 创建以 2018 年 10 月 1 日为开始111 条时间索引
  • 相邻索引间隔时间长度为一个工作日
index = pd.bdate_range('2018-10-1', periods=111)
index


 
date_range() 和 ·bdate_range() 中:

  • 可以巧妙使用 startendperiodsfreq参数的各种组合
  • 轻松批量创建时间索引
     
  1. 2017 年 10 月 1 日到 2018 年 10 月 1 日间,每隔一周创建一条索引
start = datetime(2017, 10, 1)
end = datetime(2018, 10, 1)
rng = pd.date_range(start, end, freq='W')
rng


 

  1. 2018 年 10 月 1 日向前隔一个工作日创建一条索引,共 250 条
pd.bdate_range(end=end, periods=250)

 
同理,时间段也能作为索引使用

  • 需要用到 period_range()

 

  1. 2018 年 9 月 30 日向后创建 666 条索引,相邻索引间隔时间长度为一天
pi = pd.period_range('2018-9-30', periods=666)
pi


 
 

2.5 创建以时间为索引的 Series 对象

以时间为索引的 Series 对象指的是在该 Series 中

  • 元素的索引不再是 1、2、3、4、5……这样的序号
  • 而是有序的日期和时间
import numpy as np
dates = [pd.Timestamp('2018-08-01'), pd.Timestamp('2018-09-01'),pd.Timestamp('2018-10-01')]  # 创建三个时间元素。
ts = pd.Series(np.random.randn(3), dates)   # 创建索引值为随机数的 Series 对象。
ts

  1. 同样,时间段也能作为索引。
periods = [pd.Period('2018-08'), pd.Period('2018-09'), pd.Period('2018-10')]
ts = pd.Series(np.random.randn(3), periods)
ts

  1. 我们可以批量创建索引后再 创建以时间为索引的 Series 对象
  • 创建索引值为随机数的 Series 对象
  • 长度与 rng 长度相同
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts

 

  1. 时间段也能作为索引创建 DataFrame 对象
  • 2017 年第一季度和 2018 年第四季度之间每隔一个季度创建一条索引。
prng = pd.period_range('2017Q1', '2018Q4', freq='Q-NOV')
# 行索引为时间段索引,列索引为 A。
ps = pd.DataFrame(np.random.rand(len(prng)), columns=['A'], index=prng)
ps


 
 
 

三、时间索引对象处理

时间戳为索引SeriesDataFrame 对象

  • 具有与普通列表近乎相同的操作
  • 且更具智能化

 

3.1 时间戳为索引——查找

  1. 简单查找
ts
  1. 查找前 10 条索引记录
ts[:10]

  1. 隔 1 条记录查找 1 条索引记录。
ts[::2]

  1. 查找第 0、2、6 条索引记录。
ts[[0, 2, 6]]

 

  1. 基于时间索引的精确查找
  • 查找索引为 2018 年 9 月 30 日的值。
ts["09/30/2018"]
ts[datetime(2018, 9, 30)]

 

  1. 基于索引的范围查找。
  • 查找索引时间在 2017 年内的所有记录。
ts["2017"]

  • 查找索引时间在 2018 年 9 月内的所有记录。
ts["2018-9"]


 
 

3.2 时间段为索引——查找

  • 时间段为索引的 DataFrame 对象的查找规则与以时间戳的相同。
ps


 

  1. 2018 年的第一个季度规定为 2017 年的 12 月初到 2018 年的 2 月末
  • 查找 2017 年内的所有季度的记录。
ps["2017"]

 
3. 查找 2017 年 12 月 31 日前的所有季度的记录。

ps[:datetime(2017, 12, 31)]

 

  1. 查找 2018 年 6 月内的所有季度的记录。
ps["2018-06"]


 
 

3.3 切片

使用 truncate()

  • 切下 2017 年 11 月 26 日与 2018 年 4 月 29 日间的记录。
ts.truncate(before='11/26/2017', after='4/29/2018')


 
 

3.4 移动

时间索引 Series 中的值向后和向前移动。

  • 其方法是 shift()
ts = ts[:5]  # 取前 5 条数据方便观察。
ts

  1. 将元素列向下移动一条。
ts.shift(1)

除了元素可以被移动,索引本身也能被移动,需要加上 freq 参数。

 

  1. 将索引列向上移动一条
ts.shift(1, freq='W')


 
 

3.5 重采样

重采样可以通俗得理解为改变时间索引的个数

  • 通过增大或减小相邻索引的时间间隔以达到减小或增加索引数量的效果
  • 在 Pandas 中使用 resample() 函数

 

3.5.1 下采样

增大时间间隔,减少记录的数量。

  • 创建从 2018 年 10 月 1 日开始的日间隔索引的 Series 。
rng = pd.date_range('10/1/2018', periods=10, freq='D')
ts = pd.Series(np.random.randint(0, 50, len(rng)), index=rng)
ts


 

  1. 原先索引的日间隔被扩大为周间隔
  • 并以周末为索引采样点,采样点的索引值为所有未被索引值的和
ts.resample('W').sum()


 

  1. 同样也能使 采样点的索引值为 所有未被索引值的平均值
ts.resample('W').mean()

 
3. 使用 ohlc() 函数对所用未被采样值进行统计

ts.resample('W').ohlc()


 
 

3.5.2 上采样

减小时间间隔频率,增加记录的数量

  1. 原来间隔为日的索引列,间隔被缩小成 12 小时
  • 增加采样点的值为空值
ts.resample('12H').asfreq()

 
2. ffill() 函数

  • 可以将新增的索引值以相邻的前一条索引值进行填充
ts.resample('12H').ffill()


 
 
 

四、时间的算术方法

4.1 常用时间的算术规则

下表是 Pandas 内建的一些时间类,常用于时间索引的位移

  1. 首先要导入 pandas.tseries.offsets 模块
  • Pandas 所有常用时间类都在该模块中
from pandas.tseries.offsets import DateOffset

 

  1. 使用 DateOffset() 实现时间戳位移
  • 向后移动一个月零两天。
d = pd.Timestamp(2018, 10, 1, 10, 1, 1)
d
from pandas.tseries.offsets import DateOffset
d + DateOffset(months=1, days=2)


 

  1. 也可以用时间戳加减
  • 常用时间类以实现时间戳位移
  • 向前移动 10 个工作日
from pandas.tseries.offsets import BDay
d - 10 * BDay()


 

  1. 向后移动一个月末
from pandas.tseries.offsets import BMonthEnd
d + BMonthEnd()

 

  1. 个性化定制日期。
  • 虽然日历规定年末是 12 月,加入参数后相当于人为规定 2 月是年末
  • 向后移动到上两个年末
from pandas.tseries.offsets import YearEnd
d + YearEnd(month=2)

 

  1. 向前移动上一个周四
from pandas.tseries.offsets import Week
d - Week(weekday=4)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-21wPEHpa-1619944756240)()]

 

  1. 可以使用 rollforward()
  • 将指定时间向前或向后移动到一个指定常用时间类的时间戳
  • 将时间移动到下一个月末
offset = BMonthEnd()
llforward(d)

 

  1. 将时间移动到上一个月末
llback(d)


 

4.1.1 偏移也同样适用于时间索引

rng
  1. 所有的时间索引向后移动两日
rng + DateOffset(days=2)


 

  1. 所有的时间索引向后移动两个工作日
rng + 2*BDay()

 

  1. 所有的时间索引向后移动 15 分钟
from pandas.tseries.offsets import Minute
rng + Minute(15)


 
 

4.1.2 常用时间系列频率参数

  • 下列是常用时间系列频率参数
  • 上面小节经常出现,现在以一个表格作详细说明。
参数名说明
B工作日频率
C定制工作日频率
D日历日频率
W每周频率
M月结束频率
SM半月结束频率(15 个月和月末)
BM业务月末频率
CBM定制业务月末频率
MS月起始频率
sMs半月起始频率(第 1 和 15)
BMS业务月开始频率
CBMS定制商业月份开始频率
Q四分频结束频率
BQ业务四分之一频率
QS四分频启动频率
BQS业务季开始频率
A年结束频率
BA业务年结束频率
AS年起始频率
BAS业务年开始频率
BH工作时间频率
H每小时频率
T, min分钟频率
S次频
L, ms毫秒
U, uS微秒
N纳秒

 

  1. 使用常用频率参数组合创建时间索引。
  • 创建 10 条以 2018 年 10 月 1 日为开始
  • 间隔为 1 天 1 小时 1 分钟 10 微秒的时间索引
pd.date_range("2018-10-1", periods=10, freq='1D1H1min10U')

 

4.1.3 频率参数指定后缀

以下频率参数可以指定后缀以达到改变默认间隔点的效果。

  1. 创建 10 条以 2018 年 10 月 1 日为开始,间隔为每周三的时间索引。
pd.date_range("2018-10-1", periods=10, freq='W-WED')


 

  1. n 参数
    在使用特定频率(MonthEnd,MonthBegin,WeekEnd 等)的参数
  • 如果起始时间是刚好在频率点

  • 使用 n 参数可以决定是否让该点参与计算

    • n=1 时参与计算。
from pandas.tseries.offsets import MonthBegin
pd.Timestamp('2018-10-1') + MonthBegin(n=1)


 

  • n=0 时不参与计算
pd.Timestamp('2018-10-1') + MonthBegin(n=0)


 
 

4.2 下采样聚合

下采样中的聚合是指 下采样后,对未被采样到的点进行的一系列计算

  1. 创建 100 个日历日为时间索引的 DataFrame
  • 将其以月频率下采样
df = pd.DataFrame(np.random.rand(100, 3),index=pd.date_range('10/1/2018', freq='D', periods=100),columns=['A', 'B', 'C'])
r = df.resample('M')
r

 

  1. 对未采样点求和
  • 结果保存在采样点的值中。
r.sum()


 

  1. 在下采样后也能进行查找操作
    • 选择 A、C 列后取均值计算。
r[['A', 'C']].mean()

 

  1. 使用 agg() 同时进行不同的计算
    • 对采样结果进行取和与取均值计算
r.agg([np.sum, np.mean])

 

  1. 选择 A 列,同时进行取和,取均值,取标准差计算
r['A'].agg([np.sum, np.mean, np.std])

 

  1. 对 A 列求和与标准差,对 B 列求均值与标准差
r.agg({'A': ['sum', 'std'], 'B': ['mean', 'std']})

 
 
 

五、实验总结

  • Pandas 对时间序列数据的基本处理操作。
  1. 时间的创建
  2. 时间索引对象的处理
  3. 时间的相关计算。
     
  • 基本演示,改编或组合出更高级的功能,这样才能发挥出 Pandas 的强大作用。

本文发布于:2024-01-28 09:41:58,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17064061226519.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:序列   时间   数据   Pandas
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23