python alpha

阅读: 评论:0

python alpha

python alpha

匿名用户

1级

2017-07-30 回答

Alpha-Beta剪枝用于裁剪搜索树中没有意义的不需要搜索的树枝,以提高运算速度。

假设α为下界,β为上界,对于α ≤ N ≤ β:

若 α ≤ β 则N有解。

若 α > β 则N无解。

下面通过一个例子来说明Alpha-Beta剪枝算法。

上图为整颗搜索树。这里使用极小极大算法配合Alpha-Beta剪枝算法,正方形为自己(A),圆为对手(B)。

初始设置α为负无穷大,β为正无穷大。

对于B(第四层)而已,尽量使得A获利最小,因此当遇到使得A获利更小的情况,则需要修改β。这里3小于正无穷大,所以β修改为3。

(第四层)这里17大于3,不用修改β。

对于A(第三层)而言,自己获利越大越好,因此遇到利益值大于α的时候,需要α进行修改,这里3大于负无穷大,所以α修改为3

B(第四层)拥有一个方案使得A获利只有2,α=3, β=2, α > β, 说明A(第三层)只要选择第二个方案, 则B必然可以使得A的获利少于A(第三层)的第一个方案,这样就不再需要考虑B(第四层)的其他候选方案了,因为A(第三层)根本不会选取第二个方案,多考虑也是浪费.

B(第二层)要使得A利益最小,则B(第二层)的第二个方案不能使得A的获利大于β, 也就是3. 但是若B(第二层)选择第二个方案, A(第三层)可以选择第一个方案使得A获利为15, α=15, β=3, α > β, 故不需要再考虑A(第三层)的第二个方案, 因为B(第二层)不会选择第二个方案.

A(第一层)使自己利益最大,也就是A(第一层)的第二个方案不能差于第一个方案, 但是A(第三层)的一个方案会导致利益为2, 小于3, 所以A(第三层)不会选择第一个方案, 因此B(第四层)也不用考虑第二个方案.

当A(第三层)考虑第二个方案时,发现获得利益为3,和A(第一层)使用第一个方案利益一样.如果根据上面的分析A(第一层)优先选择了第一个方案,那么B不再需要考虑第二种方案,如果A(第一层)还想进一步评估两个方案的优劣的话, B(第二层)则还需要考虑第二个方案,若B(第二层)的第二个方案使得A获利小于3,则A(第一层)只能选择第一个方案,若B(第二层)的第二个方案使得A获利大于3,则A(第一层)还需要根据其他因素来考虑最终选取哪种方案.

Alpha-Beta剪枝算法(Alpha Beta Pruning)

[说明] 本文基于<>,文中的图片均来源于此笔记。

Alpha-Beta剪枝用于裁剪搜索树中没有意义的不需要搜索的树枝,以提高运算速度。

假设α为下界,β为上界,对于α ≤ N ≤ β:

若 α ≤ β 则N有解。

若 α > β 则N无解。

下面通过一个例子来说明Alpha-Beta剪枝算法。

上图为整颗搜索树。这里使用极小极大算法配合Alpha-Beta剪枝算法,正方形为自己(A),圆为对手(B)。

初始设置α为负无穷大,β为正无穷大。

对于B(第四层)而已,尽量使得A获利最小,因此当遇到使得A获利更小的情况,则需要修改β。这里3小于正无穷大,所以β修改为3。

(第四层)这里17大于3,不用修改β。

对于A(第三层)而言,自己获利越大越好,因此遇到利益值大于α的时候,需要α进行修改,这里3大于负无穷大,所以α修改为3

B(第四层)拥有一个方案使得A获利只有2,α=3, β=2, α > β, 说明A(第三层)只要选择第二个方案, 则B必然可以使得A的获利少于A(第三层)的第一个方案,这样就不再需要考虑B(第四层)的其他候选方案了,因为A(第三层)根本不会选取第二个方案,多考虑也是浪费.

B(第二层)要使得A利益最小,则B(第二层)的第二个方案不能使得A的获利大于β, 也就是3. 但是若B(第二层)选择第二个方案, A(第三层)可以选择第一个方案使得A获利为15, α=15, β=3, α > β, 故不需要再考虑A(第三层)的第二个方案, 因为B(第二层)不会选择第二个方案.

A(第一层)使自己利益最大,也就是A(第一层)的第二个方案不能差于第一个方案, 但是A(第三层)的一个方案会导致利益为2, 小于3, 所以A(第三层)不会选择第一个方案, 因此B(第四层)也不用考虑第二个方案.

当A(第三层)考虑第二个方案时,发现获得利益为3,和A(第一层)使用第一个方案利益一样.如果根据上面的分析A(第一层)优先选择了第一个方案,那么B不再需要考虑第二种方案,如果A(第一层)还想进一步评估两个方案的优劣的话, B(第二层)则还需要考虑第二个方案,若B(第二层)的第二个方案使得A获利小于3,则A(第一层)只能选择第一个方案,若B(第二层)的第二个方案使得A获利大于3,则A(第一层)还需要根据其他因素来考虑最终选取哪种方案.

本文发布于:2024-01-28 13:48:20,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17064209037851.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:python   alpha
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23