# Author:北京
# QQ:838262020
# time:2019/9/13
import tensorflow as tf# 用3维的向量存入变量x
x = tf.placeholder(shape=[3], dtype=tf.float32)
yTrain = tf.placeholder(shape=[], dtype=tf.float32)# 用3维向量存入可变参数w
w = tf.s([3]), dtype=tf.float32)n = w * x# 所有维度的值相加求和,等于原来的y= n1+n2+n3
y = tf.reduce_sum(n)loss = tf.abs(y - yTrain)optimzer = tf.train.RMSPropOptimizer(0.001)train = optimzer.minimize(loss)sess = tf.Session()init = tf.global_variables_initializer()sess.run(init)result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x: [90, 80, 70], yTrain: 85})
print(result)
来源于《深度学习基于Python语言和TensorFlow平台》
本文发布于:2024-01-28 14:16:41,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/17064226068013.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |