我们在,搭建了初步的神经网络模型。但是没有进行循环训练神经网络模型,现在我们要对上一节中的神经网络模型进行训练。
神经网络训练流程图
# Author:北京
# QQ:838262020
# time:2019/9/13
import tensorflow as tfx1 = tf.placeholder(dtype=tf.float32)
x2 = tf.placeholder(dtype=tf.float32)
x3 = tf.placeholder(dtype=tf.float32)# 添加一个目标值
yTrain = tf.placeholder(dtype=tf.float32)w1 = tf.Variable(0.1, dtype=tf.float32)
w2 = tf.Variable(0.1, dtype=tf.float32)
w3 = tf.Variable(0.1, dtype=tf.float32)n1 = x1 * w1
n2 = x2 * w2
n3 = x3 * w3y = n1 + n2 + n3# 训练值和目标值的绝对值差
loss = abs(y - yTrain)# 使用RMSPropOptimzer优化器
optimzer = tf.train.RMSPropOptimizer(0.001)# 按照最小化的原则处理loss
train = optimzer.minimize(loss)sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)result1 = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 90, x2: 80, x3: 85, yTrain: 85})
print(result1)
result2 = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96})
print(result2)
[None, array(90.0, dtype=float32), array(80.0, dtype=float32), array(70.0, dtype=float32), 0.10316052, 0.10316006, 0.10315938, 24.0, array(85.0, dtype=float32), 61.0]
[None, array(98.0, dtype=float32), array(95.0, dtype=float32), array(87.0, dtype=float32), 0.10554425, 0.10563005, 0.1056722, 28.884804, array(96.0, dtype=float32), 67.115196]
本文发布于:2024-01-28 14:17:25,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/17064226508018.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |