论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals
1、使用CNN-LSTM神经网络架构同时计算HR、SBP、DBP、MAP(心率和血压);
2、通过Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS)的标准;
3、在MIMIC II数据集上使用10-fold交叉验证;
4、采样频率125HZ;
5、预处理,将数据集中的数据长度过短、数据值异常的去掉;
H δ ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 , i f ∣ y − f ( x ) ∣ ≤ δ , δ ∣ y − f ( x ) ∣ − 1 2 δ 2 , o t h e r w i s e . H_delta(y,f(x))=begin{cases}frac{1}{2}(y-f(x))^2,&if~|y-f(x)|ledelta,\[6pt]delta|y-f(x)|-frac{1}{2}delta^2,&otherwise.end{cases} Hδ(y,f(x))=⎩ ⎨ ⎧21(y−f(x))2,δ∣y−f(x)∣−21δ2,if ∣y−f(x)∣≤δ,otherwise.
其中 δ = 1 delta=1 δ=1
M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ M E = 1 n ∑ i = 1 n ( y i − y ^ i ) S D = 1 n ∑ i = 1 n ( x i − M E ) 2 begin{aligned} {MAE}& =frac{1}{n}sumlimits_{i=1}^nleft|y_i-hat{y}_iright| \ ME& =frac{1}{n}sumlimits_{i=1}^nleft(y_i-hat{y}_iright) \ SD& =sqrt{frac{1}{n}sumlimits_{i=1}^nleft(x_i-MEright)^2} end{aligned} MAEMESD=n1i=1∑n∣yi−y^i∣=n1i=1∑n(yi−y^i)=n1i=1∑n(xi−ME)2
Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals
本文发布于:2024-01-28 18:50:48,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/17064390519513.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |