java神经网络文字识别

阅读: 评论:0

java神经网络文字识别

java神经网络文字识别

使用Estimators、Experiment高级API

from __future__ import division, print_function, absolute_import

# Import MNIST data,MNIST数据集导入

ist import input_data

mnist = ad_data_sets("/tmp/data/", one_hot=False)

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

# In[2]:

# Training Parameters,超参数

learning_rate = 0.001 #学习率

num_steps = 2000 # 训练步数

batch_size = 128 # 训练数据批的大小

# Network Parameters,网络参数

num_input = 784 # MNIST数据输入 (img shape: 28*28)

num_classes = 10 # MNIST所有类别 (0-9 digits)

dropout = 0.75 # Dropout, probability to keep units,保留神经元相应的概率

# In[3]:

# Create the neural network,创建深度神经网络

def conv_net(x_dict, n_classes, dropout, reuse, is_training):

# Define a scope for reusing the variables,确定命名空间

with tf.variable_scope('ConvNet', reuse=reuse):

# TF Estimator类型的输入为像素

x = x_dict['images']

# MNIST数据输入格式为一位向量,包含784个特征 (28*28像素)

# 用reshape函数改变形状以匹配图像的尺寸 [高 x 宽 x 通道数]

# 输入张量的尺度为四维: [(每一)批数据的数目, 高,宽,通道数]

x = tf.reshape(x, shape=[-1, 28, 28, 1])

# 卷积层,32个卷积核,尺寸为5x5

conv1 = v2d(x, 32, 5, activation&#lu)

# 最大池化层,步长为2,无需学习任何参量

conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

# 卷积层,32个卷积核,尺寸为5x5

conv2 = v2d(conv1, 64, 3, activation&#lu)

# 最大池化层,步长为2,无需学习任何参量

conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

# 展开特征为一维向量,以输入全连接层

fc1 = tf.contrib.layers.flatten(conv2)

# 全连接层 展开成1024 维度矩阵

fc1 = tf.layers.dense(fc1, 1024)

# 应用Dropout (训练时打开,测试时关闭)

fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)

# 输出层,预测类别

out = tf.layers.dense(fc1, n_classes)

return out

# In[4]:

# 确定模型功能 (参照TF Estimator模版) 参数分别为输入特征、标签、

def model_fn(features, labels, mode):

# 构建神经网络

# 因为dropout在训练与测试时的特性不一,我们此处为训练和测试过程创建两个独立但共享权值的计算图

logits_train = conv_net(features, num_classes, dropout, reuse=False, is_training=True)

logits_test = conv_net(features, num_classes, dropout, reuse=True, is_training=False)

# 预测 axis = 1的时候返回每一行最大值的位置索引

#tf.argmax 计算正确答案对应的类别编号

pred_classes = tf.argmax(logits_test, axis=1)

#计算非线性激励

pred_probas = tf.nn.softmax(logits_test)

if mode == tf.estimator.ModeKeys.PREDICT:

return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)

# 确定误差函数与优化器

#tf.nn.sparse_softmax_cross_entropy_with_logits 计算交叉熵

#tf.reduce_mean 计算交叉熵平均值

loss_op = tf.reduce_sparse_softmax_cross_entropy_with_logits(

logits=logits_train, labels=tf.cast(labels, dtype=tf.int32)))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

train_op = optimizer.minimize(loss_op, global_step&#_global_step())

# 评估模型精确度

acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)

# TF Estimators需要返回EstimatorSpec

estim_specs = tf.estimator.EstimatorSpec(

mode=mode,

predictions=pred_classes,

loss=loss_op,

train_op=train_op,

eval_metric_ops={'accuracy': acc_op})

return estim_specs

# In[5]:

# 构建Estimator

model = tf.estimator.Estimator(model_fn)

# In[6]:

# 确定训练输入函数

input_fn = tf.estimator.inputs.numpy_input_fn(

x={'images': ain.images}, y&#ain.labels,

batch_size=batch_size, num_epochs=None, shuffle=True)

# 开始训练模型

# In[7]:

# 评判模型

# 确定评判用输入函数

input_fn = tf.estimator.inputs.numpy_input_fn(

x={'images': st.images}, y&#st.labels,

batch_size=batch_size, shuffle=False)

model.evaluate(input_fn)

# In[8]:

# 预测单个图像 循环图片个数

n_images = 10

# 从数据集得到测试图像 获取前10张图片

test_images = st.images[:n_images]

# 准备输入数据

input_fn = tf.estimator.inputs.numpy_input_fn(

x={'images': test_images}, shuffle=False)

# 用训练好的模型预测图片类别

preds = list(model.predict(input_fn))

# 可视化显示

for i in range(n_images):

plt.shape(test_images[i], [28, 28]), cmap='gray')

plt.show()

print("Model prediction:", preds[i])

原生版Tensorflow训练模型

from __future__ import division, print_function, absolute_import

import tensorflow as tf

# Import MNIST data,MNIST数据集导入

ist import input_data

mnist = ad_data_sets("/tmp/data/", one_hot=True)

# In[2]:

# Hyper-parameters,超参数

learning_rate = 0.001

num_steps = 500

batch_size = 128

display_step = 10

# Network Parameters,网络参数

num_input = 784 # MNIST数据输入 (img shape: 28*28)

num_classes = 10 # MNIST所有类别 (0-9 digits)

dropout = 0.75 # Dropout, probability to keep units,保留神经元相应的概率

# tf Graph input,TensorFlow图结构输入

X = tf.placeholder(tf.float32, [None, num_input])

Y = tf.placeholder(tf.float32, [None, num_classes])

keep_prob = tf.placeholder(tf.float32) # dropout (keep probability),保留i

# In[3]:

# Create some wrappers for simplicity,创建基础卷积函数,简化写法

def conv2d(x, W, b, strides=1):

# Conv2D wrapper, with bias and relu activation,卷积层,包含bias与非线性relu激励

x = v2d(x, W, strides=[1, strides, strides, 1], padding='SAME')

x = tf.nn.bias_add(x, b)

lu(x)

def maxpool2d(x, k=2):

# MaxPool2D wrapper,最大池化层

ax_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],

padding='SAME')

# Create model,创建模型

def conv_net(x, weights, biases, dropout):

# MNIST数据为维度为1,长度为784 (28*28 像素)的

# Reshape to match picture format [Height x Width x Channel]

# Tensor input become 4-D: [Batch Size, Height, Width, Channel]

x = tf.reshape(x, shape=[-1, 28, 28, 1])

# Convolution Layer,卷积层

conv1 = conv2d(x, weights['wc1'], biases['bc1'])

# Max Pooling (down-sampling),最大池化层/下采样

conv1 = maxpool2d(conv1, k=2)

# Convolution Layer,卷积层

conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])

# Max Pooling (down-sampling),最大池化层/下采样

conv2 = maxpool2d(conv2, k=2)

# Fully connected layer,全连接网络

# Reshape conv2 output to fit fully connected layer input,调整conv2层输出的结果以符合全连接层的需求

fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])

fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])

fc1 = lu(fc1)

# Apply Dropout,应用dropout

fc1 = tf.nn.dropout(fc1, dropout)

# Output, class prediction,最后输出预测

out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])

return out

# In[4]:

# Store layers weight & bias 存储每一层的权值和全差

weights = {

# 5x5 conv, 1 input, 32 outputs

'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),

# 5x5 conv, 32 inputs, 64 outputs

'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),

# fully connected, 7*7*64 inputs, 1024 outputs

'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),

# 1024 inputs, 10 outputs (class prediction)

'out': tf.Variable(tf.random_normal([1024, num_classes]))

}

biases = {

'bc1': tf.Variable(tf.random_normal([32])),

'bc2': tf.Variable(tf.random_normal([64])),

'bd1': tf.Variable(tf.random_normal([1024])),

'out': tf.Variable(tf.random_normal([num_classes]))

}

# Construct model,构建模型

logits = conv_net(X, weights, biases, keep_prob)

prediction = tf.nn.softmax(logits)

# Define loss and optimizer,定义误差函数与优化器

loss_op = tf.reduce_softmax_cross_entropy_with_logits(

logits=logits, labels=Y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

train_op = optimizer.minimize(loss_op)

# Evaluate model,评估模型

correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))

accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initialize the variables (i.e. assign their default value),初始化图结构所有变量

init = tf.global_variables_initializer()

# In[5]:

# Start training,开始训练

with tf.Session() as sess:

# Run the initializer,初始化

sess.run(init)

for step in range(1, num_steps+1):

batch_x, batch_y = _batch(batch_size)

# Run optimization op (backprop),优化

sess.run(train_op, feed_dict={X: batch_x, Y: batch_y, keep_prob: dropout})

if step % display_step == 0 or step == 1:

# Calculate batch loss and accuracy

loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,

Y: batch_y,

keep_prob: 1.0})

print("Step " + str(step) + ", Minibatch Loss= " + "{:.4f}".format(loss) + ", Training Accuracy= " + "{:.3f}".format(acc))

print("Optimization Finished!")

# Calculate accuracy for 256 MNIST test images,以每256个测试图像为例,

print("Testing Accuracy:", sess.run(accuracy, feed_dict={X: st.images[:256],

Y: st.labels[:256],

keep_prob: 1.0}))

本文发布于:2024-01-28 18:52:08,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/17064391319522.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:神经网络   文字   java
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23