深度学习100例

阅读: 评论:0

深度学习100例

深度学习100例

文章目录

    • 一、导入数据
      • 1. 获取类别名字
      • 2. 加载数据文件
      • 3. 划分数据
    • 二、自建模型
    • 三、模型训练
      • 1. 优化器与损失函数
      • 2. 模型的训练
    • 四、结果分析

大家好,我是K同学啊,今天讲《深度学习100例》PyTorch版的第4个例子,前面一些例子主要还是以带大家了解PyTorch为主,建议手动敲一下代码,只有自己动手了,才能真正体会到里面的内容,光看不练是没有用的。今天的重点是在PyTorch调用VGG-16算法模型。先来了解一下PyTorch与TensorFlow的区别

PyTorch VS TensorFlow

  • TensorFlow:简单,模块封装比较好,容易上手,对新手比较友好。在工业界最重要的是模型落地,目前国内的大部分企业支持TensorFlow模型在线部署,不支持Pytorch。
  • PyTorch前沿算法多为PyTorch版本,如果是你高校学生or研究人员,建议学这个。相对于TensorFlow,Pytorch在易用性上更有优势,更加方便调试。

当然如果你时间充足,我建议两个模型都是需要了解一下的,这两者都还是很重要的。

🍨 本文的重点:将讲解如何使用PyTorch构建神经网络模型(将对这一块展开详细的讲解)

🍖 我的环境:

  • 语言环境:Python3.8
  • 编译器:Jupyter Lab
  • 深度学习环境:
    • torch==1.10.0+cu113
    • torchvision==0.11.1+cu113

深度学习环境配置教程:小白入门深度学习 | 第四篇:配置PyTorch环境

👉 往期精彩内容

  1. 深度学习100例 | 第1例:猫狗识别 - PyTorch实现
  2. 深度学习100例 | 第2例:人脸表情识别 - PyTorch实现
  • 🔥 本文选自专栏:《深度学习100例》Pytorch版
  • 镜像专栏:《深度学习100例》TensorFlow版

一、导入数据

ansforms import transforms
from torch.utils.data       import DataLoader
from torchvision            import datasets
dels   as models
functional  as F
             as nn
import torch,torchvision

1. 获取类别名字

import os,PIL,random,pathlibdata_dir = './04-data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\")[1] for path in data_paths]
classeNames
['Apple','Banana','Carambola','Guava','Kiwi','Mango','muskmelon','Orange','Peach','Pear','Persimmon','Pitaya','Plum','Pomegranate','Tomatoes']

2. 加载数据文件

total_datadir = './04-data/'# 关于transforms.Compose的更多介绍可以参考:
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 12000Root location: ./04-data/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

3. 划分数据

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x24bbdb84ac0>,<torch.utils.data.dataset.Subset at 0x24bbdb84610>)
train_size,test_size
(9600, 2400)
train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=16,shuffle=True,num_workers=1)
test_loader = torch.utils.data.DataLoader(test_dataset,batch_size=16,shuffle=True,num_workers=1)print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader))
The number of images in a training set is:  9600
The number of images in a test set is:  2400
The number of batches per epoch is:  600
for X, y in test_loader:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([16, 3, 224, 224])
Shape of y:  torch.Size([16]) torch.int64

二、自建模型

nn.Conv2d()函数:

  • 第一个参数(in_channels)是输入的channel数量,彩色图片为3,黑白图片为1。
  • 第二个参数(out_channels)是输出的channel数量
  • 第三个参数(kernel_size)是卷积核大小
  • 第四个参数(stride)是步长,就是卷积操作时每次移动的格子数,默认为1
  • 第五个参数(padding)是填充大小,默认为0

这里大家最难理解的可能就是nn.Linear(24*50*50, len(classeNames))这行代码了,在理解它之前你需要先补习一下👉卷积计算 的相关知识,然后可参照下面的网络结构图来进行理解

class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0""&#v1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(v2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,v4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(v5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.v1(x)))      x = F.relu(self.v2(x)))     x = self.pool(x)                        x = F.relu(self.v4(x)))     x = F.relu(self.v5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model
Using cuda deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=15, bias=True)
)

三、模型训练

1. 优化器与损失函数

optimizer  = torch.optim.Adam(model.parameters(), lr=0.0001, weight_decay=0.0001)
loss_model = nn.CrossEntropyLoss()
from torch.autograd import Variabledef test(model, test_loader, loss_model):size = len(test_loader.dataset)num_batches = len(test_loader)model.eval()test_loss, correct = 0, _grad():for X, y in test_loader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_model(pred, y).item()correct += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchescorrect /= sizeprint(f"Test Error: n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} n")return correct,test_lossdef train(model,train_loader,loss_model,optimizer):model&#(ain()for i, (images, labels) in enumerate(train_loader, 0):images = (device))labels = (device))_grad()outputs = model(images)loss = loss_model(outputs, labels)loss.backward()optimizer.step()if i % 1000 == 0:    print('[%5d] loss: %.3f' % (i, loss))

2. 模型的训练

test_acc_list  = []
epochs = 30for t in range(epochs):print(f"Epoch {t+1}n-------------------------------")train(model,train_loader,loss_model,optimizer)test_acc,test_loss = test(model, test_loader, loss_model)test_acc_list.append(test_acc)
print("Done!")
Epoch 1
-------------------------------
[    0] loss: 2.780
Test Error: Accuracy: 85.8%, Avg loss: 0.440920 Epoch 2
-------------------------------
[    0] loss: 0.468
Test Error: Accuracy: 89.2%, Avg loss: 0.377265 ......Epoch 29
-------------------------------
[    0] loss: 0.000
Test Error: Accuracy: 91.2%, Avg loss: 0.885408 Epoch 30
-------------------------------
[    0] loss: 0.000
Test Error: Accuracy: 91.8%, Avg loss: 0.660563 Done!

四、结果分析

import numpy as np
import matplotlib.pyplot as pltx = [i for i in range(1,31)]plt.plot(x, test_acc_list, label="Accuracy", alpha=0.8)plt.xlabel("Epoch")
plt.ylabel("Accuracy")plt.legend()    
plt.show()

本文发布于:2024-01-29 01:11:10,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170646187311639.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:深度
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23