这篇文章最主要就是提出来两个模块,如上图所示,一个是FGD Module(Fine-grained Depth Module),另一个是EADF Module(Edge-aware Depth Fusion Module)
这个模块简单来说就是解决来自点云的投影深度图和预测深度图之间,由于两者稀疏程度不同,投影过来的真值更稀疏,导致算Loss的时候会有很多零值造成的影响这个问题,具体怎么解决看代码,就是这样一个东西。
第二个模块有趣一些,但也不是什么很精妙的设计吧。
如上图所示,我们从点云投影到图像上的深度图是非常稀疏的,大概只有5%左右的有效点,这个图叫D,然后做了一个什么事情呢?
把稀疏的深度图按k*k的block进行切分,然后用每个block中的最大值来进行形态学上的膨胀操作进行填充就会得到D’。然后在x轴和y轴方向求梯度,或者说求差值,得到G‘,在用最大池化归一化缩放到0-1之间。
F 【EADF】 = [D : G′].这个模块的输出就是D和G’拼到一块,就这样。
文章就是这样,然后呢因为lss是个插件,可以和现有的很多算法相结合,于是就结合了一下此前的sota,bevfusion,然后得到一个新的sota就是这样。不管怎么说,结果是好的,至于工业界和学术界怎么看就不知道了。
本文发布于:2024-01-29 05:17:07,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170647663312961.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |