应用Transformer框架对分子属性进行预测,代码:MAT,原文:Molecule Attention Transformer。变量名,函数名很多来自The Annotated Transformer,在《深入浅出Embedding》一书中也做了讲解。本文主要从实例运行开始一步步看代码具体内容,整体模型如下:
from featurization.data_utils import load_data_from_df, construct_loader
batch_size = 64# Formal charges are one-hot encoded to keep compatibility with the pre-trained weights.
# If you do not plan to use the pre-trained weights, we recommend to set one_hot_formal_charge to False.
X, y = load_data_from_df('../data/freesolv/freesolv.csv', one_hot_formal_charge=True)
data_loader = construct_loader(X, y, batch_size)
def load_data_from_df(dataset_path, add_dummy_node=True, one_hot_formal_charge=False, use_data_saving=True):"""Load and featurize data stored in a CSV file.Args:dataset_path (str): A path to the CSV file containing the data. It should have two columns:the first one contains SMILES strings of the compounds,the second one contains labels.add_dummy_node (bool): If True, a dummy node will be added to the molecular graph. Defaults _hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded. Defaults to False.use_data_saving (bool): If True, saved features will be loaded from the dataset directory; if no feature fileis present, the features will be saved after calculations. Defaults to True.Returns:A tuple (X, y) in which X is a list of graph descriptors (node features, adjacency matrices, distance matrices),and y is a list of the corresponding labels."""feat_stamp = f'{"_dn" if add_dummy_node else ""}{"_ohfc" if one_hot_formal_charge else ""}'feature_path = place('.csv', f'{feat_stamp}.p')if use_data_saving and ists(feature_path):logging.info(f"Loading features stored at '{feature_path}'")x_all, y_all = pickle.load(open(feature_path, "rb"))return x_all, y_alldata_df = pd.read_csv(dataset_path)data_x = data_df.iloc[:, 0].valuesdata_y = data_df.iloc[:, 1].valuesif data_y.dtype == np.float64:data_y = data_y.astype(np.float32)x_all, y_all = load_data_from_smiles(data_x, data_y, add_dummy_node=add_dummy_node,one_hot_formal_charge=one_hot_formal_charge)if use_data_saving and not ists(feature_path):logging.info(f"Saving features at '{feature_path}'")pickle.dump((x_all, y_all), open(feature_path, "wb"))return x_all, y_all
data_x | data_y | |
---|---|---|
0 | CN©C(=O)c1ccc(cc1)OC | -1.874467 |
1 | CS(=O)(=O)Cl | -0.277514 |
2 | CC©C=C | 1.465089 |
3 | CCc1cnccn1 | -0.428367 |
4 | CCCCCCCO | -0.105855 |
import numpy as np
np.asarray(X).shape,np.asarray(y).shape #((642, 3), (642, 1))
X[0],y[0]
"""
([array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.],[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],[0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 1.],[0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.,0., 0., 1., 0., 0., 0., 0., 0., 1., 0., 0., 0.],[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,0., 0., 0., 0., 0., 1., 0., 0., 1., 0., 0., 0.]]),array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0.],[0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 1., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0.],[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 1.],[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1.]]),array([[1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,1.00000000e+06, 1.00000000e+06, 1.00000000e+06, 1.00000000e+06,1.00000000e+06, 1.00000000e+06],...[-1.8744674])"""
X[0][0].shape,X[0][1].shape,X[0][2].shape #((14, 28), (14, 14), (14, 14))
X[1][0].shape,X[1][1].shape,X[1][2].shape #((6, 28), (6, 6), (6, 6))
def load_data_from_smiles(x_smiles, labels, add_dummy_node=True, one_hot_formal_charge=False):"""Load and featurize data from lists of SMILES strings and labels.Args:x_smiles (list[str]): A list of SMILES strings.labels (list[float]): A list of the corresponding labels.add_dummy_node (bool): If True, a dummy node will be added to the molecular graph. Defaults _hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded. Defaults to False.Returns:A tuple (X, y) in which X is a list of graph descriptors (node features, adjacency matrices, distance matrices),and y is a list of the corresponding labels."""x_all, y_all = [], []for smiles, label in zip(x_smiles, labels):try:mol = MolFromSmiles(smiles)try:mol = Chem.AddHs(mol)AllChem.EmbedMolecule(mol, maxAttempts=5000)AllChem.UFFOptimizeMolecule(mol)mol = Chem.RemoveHs(mol)except:AllChem.Compute2DCoords(mol)afm, adj, dist = featurize_mol(mol, add_dummy_node, one_hot_formal_charge)x_all.append([afm, adj, dist])y_all.append([label])except ValueError as e:logging.warning('the SMILES ({}) can not be converted to a graph.nREASON: {}'.format(smiles, e))return x_all, y_all
def featurize_mol(mol, add_dummy_node, one_hot_formal_charge):"""Featurize molecule.Args:mol (rdchem.Mol): An RDKit Mol object.add_dummy_node (bool): If True, a dummy node will be added to the _hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded.Returns:A tuple of molecular graph descriptors (node features, adjacency matrix, distance matrix)."""node_features = np.array([get_atom_features(atom, one_hot_formal_charge)for atom in mol.GetAtoms()])adj_matrix = np.eye(mol.GetNumAtoms())for bond in mol.GetBonds():begin_atom = bond.GetBeginAtom().GetIdx()end_atom = bond.GetEndAtom().GetIdx()adj_matrix[begin_atom, end_atom] = adj_matrix[end_atom, begin_atom] = 1conf = mol.GetConformer()pos_matrix = np.array([[conf.GetAtomPosition(k).x, conf.GetAtomPosition(k).y, conf.GetAtomPosition(k).z]for k in range(mol.GetNumAtoms())])dist_matrix = pairwise_distances(pos_matrix)if add_dummy_node:m = np.zeros((node_features.shape[0] + 1, node_features.shape[1] + 1))m[1:, 1:] = node_featuresm[0, 0] = 1.node_features = mm = np.zeros((adj_matrix.shape[0] + 1, adj_matrix.shape[1] + 1))m[1:, 1:] = adj_matrixadj_matrix = mm = np.full((dist_matrix.shape[0] + 1, dist_matrix.shape[1] + 1), 1e6)m[1:, 1:] = dist_matrixdist_matrix = mreturn node_features, adj_matrix, dist_matrix
pos_matrix=np.array([[1,1,1],[1,2,3]
])
print(pairwise_distances(pos_matrix))
"""
[[0. 2.23606798][2.23606798 0. ]]
"""
print(np.sqrt((1-1)**2+(1-2)**2+(1-3)**2)) #2.23606797749979
def get_atom_features(atom, one_hot_formal_charge=True):"""Calculate atom features.Args:atom (rdchem.Atom): An RDKit _hot_formal_charge (bool): If True, formal charges on atoms are one-hot encoded.Returns:A 1-dimensional array (ndarray) of atom features."""attributes = []attributes += one_hot_vector(atom.GetAtomicNum(),[5, 6, 7, 8, 9, 15, 16, 17, 35, 53, 999])attributes += one_hot_vector(len(atom.GetNeighbors()),[0, 1, 2, 3, 4, 5])attributes += one_hot_vector(atom.GetTotalNumHs(),[0, 1, 2, 3, 4])if one_hot_formal_charge:attributes += one_hot_vector(atom.GetFormalCharge(),[-1, 0, 1])else:attributes.append(atom.GetFormalCharge())attributes.append(atom.IsInRing())attributes.append(atom.GetIsAromatic())return np.array(attributes, dtype=np.float32)
def one_hot_vector(val, lst):"""Converts a value to a one-hot vector based on options in lst"""if val not in lst:val = lst[-1]return map(lambda x: x == val, lst)
def construct_loader(x, y, batch_size, shuffle=True):"""Construct a data loader for the provided data.Args:x (list): A list of molecule features.y (list): A list of the corresponding labels.batch_size (int): The batch size.shuffle (bool): If True the data will be loaded in a random order. Defaults to True.Returns:A DataLoader object that yields batches of padded molecule features."""data_set = construct_dataset(x, y)loader = torch.utils.data.DataLoader(dataset=data_set,batch_size=batch_size,collate_fn=mol_collate_func,shuffle=shuffle)return loader
def construct_dataset(x_all, y_all):"""Construct a MolDataset object from the provided data.Args:x_all (list): A list of molecule features.y_all (list): A list of the corresponding labels.Returns:A MolDataset object filled with the provided data."""output = [Molecule(data[0], data[1], i)for i, data in enumerate(zip(x_all, y_all))]return MolDataset(output)
class Molecule:"""Class that represents a train/validation/test datum- self.label: 0 neg, 1 pos -1 missing for different target."""def __init__(self, x, y, index):de_features = x[0]self.adjacency_matrix = x[1]self.distance_matrix = x[2]self.y = yself.index = index
class MolDataset(Dataset):"""Class that represents a train/validation/test dataset that's readable for PyTorchNote that this class inherits torch.utils.data.Dataset"""def __init__(self, data_list):"""@param data_list: list of Molecule objects"""self.data_list = data_listdef __len__(self):return len(self.data_list)def __getitem__(self, key):if type(key) == slice:return MolDataset(self.data_list[key])return self.data_list[key]
def mol_collate_func(batch):"""Create a padded batch of molecule features.Args:batch (list[Molecule]): A batch of raw molecules.Returns:A list of FloatTensors with padded molecule features:adjacency matrices, node features, distance matrices, and labels."""adjacency_list, distance_list, features_list = [], [], []labels = []max_size = 0for molecule in batch:if type(molecule.y[0]) == np.ndarray:labels.append(molecule.y[0])else:labels.append(molecule.y)if molecule.adjacency_matrix.shape[0] > max_size:max_size = molecule.adjacency_matrix.shape[0]for molecule in batch:adjacency_list.append(pad_array(molecule.adjacency_matrix, (max_size, max_size)))distance_list.append(pad_array(molecule.distance_matrix, (max_size, max_size)))features_list.append(pad_de_features, (max_size, de_features.shape[1])))return [FloatTensor(features) for features in (adjacency_list, features_list, distance_list, labels)]
def pad_array(array, shape, dtype=np.float32):"""Pad a 2-dimensional array with zeros.Args:array (ndarray): A 2-dimensional array to be padded.shape (tuple[int]): The desired shape of the padded array.dtype (data-type): The desired data-type for the array.Returns:A 2-dimensional array of the given shape padded with zeros."""padded_array = np.zeros(shape, dtype=dtype)padded_array[:array.shape[0], :array.shape[1]] = arrayreturn padded_array
batch_size=2
cnt=1
for data in data_loader:print(data[0].shape)print(data[1].shape)print(data[2].shape)print(data[3].shape)cnt+=1if (cnt==3):break
"""
torch.Size([2, 13, 13])
torch.Size([2, 13, 28])
torch.Size([2, 13, 13])
torch.Size([2, 1])
torch.Size([2, 9, 9])
torch.Size([2, 9, 28])
torch.Size([2, 9, 9])
torch.Size([2, 1])
"""
本文发布于:2024-01-29 08:07:44,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170648686713879.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |