CatBoost算法模型实现贷款违约预测

阅读: 评论:0

CatBoost算法模型实现贷款违约预测

CatBoost算法模型实现贷款违约预测


前言

此篇文章为整个Boost(提升方法)集成算法模型的终章,前几篇文章依次结合详细项目案例讲解了AdaBoost、GBDT、XGBoost、LighGBM共四个常用的集成算法模型,每一篇文章都包含实战项目以及可运行代码。仅通过看一遍文章不去实践是很难掌握集成算法模型的,其中很多思想和优化参数的方法需要长期使用才能掌握,集成学习的方法在全球各大机器学习、数据挖掘竞赛中使用的非常广泛,其概念和思想也是风靡学术界和工业界,所以有此需求的朋友推荐细读实践。

之前我们已经详细描述了AdaBoost算法模型和GBDT原理以及实践。通过这

本文发布于:2024-01-29 08:35:00,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170648850514027.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:算法   贷款   模型   CatBoost
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23