端午节也不忘分享目标检测实战!

阅读: 评论:0

端午节也不忘分享目标检测实战!

端午节也不忘分享目标检测实战!

今天是中国传统节日——端午节!在此,祝大家节日快乐!

关注并星标

从此不迷路

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

最近总是有很多入门的朋友问我们,进入计算机视觉这个领域难不难?是不是要学习很多知识?到底哪个方向比较好?

对于这些问题其实我们也不好回答他们,只能衷心告诉他们,如果你对这领域特别感兴趣,那你可以进来试试玩玩,如果试过了玩过了,觉得这不是你喜欢的领域,那你可以立马退出,选择你喜欢的领域方向。

我个人一直认为,科研这个东西,真的是要有兴趣爱好,这是你动力和创新的源泉。只有对自己选择的领域有兴趣,有动力深入挖掘,我觉得一定会做得很好,可能还会创造出许多意想不到的结果。

如果现在你们入门的朋友,选择了目标检测类,你们可以没事玩玩今天说的框架和网络,这个过程真的可以学习很多东西,只要你愿意花费时间和精力去深入,现在我们闲话少说,直接进入正题。


正如我之前说的:深度学习近期总结分析。在目标检测中,有很多经典的网络框架,比如RCNN,SSP,Fast RCNN。其中Fast RCNN就使用Selective Search来进行候选区域,但是速度依然不够快。今天的主角(Faster R-CNN)则直接利用RPN(Region Proposal Networks)网络来计算候选框。RPN以一张任意大小的图片为输入,输出一批矩形候选区域,每个区域对应一个目标分数和位置信息。Faster R-CNN中的RPN结构如图所示。

Faster RCNN的主要步骤如下:

  1. 特征提取:同Fast RCNN,以整张图片为输入,利用CNN得到图片的特征层;

  2. 候选区域:在最终的卷积特征层上利用k个不同的矩形框(Anchor Box)进行提名,k一般取9;

  3. 分类与回归:对每个Anchor Box对应的区域进行object/non-object二分类,并用k个回归模型(各自对应不同的Anchor Box)微调候选框位置与大小,最后进行目标分类。

总之,Faster RCNN抛弃了Selective Search,引入了RPN网络,使得候选区域、分类、回归一起共用卷积特征,从而得到了进一步的加速。但是,Faster RCNN需要对两万个Anchor Box先判断是否是目标(目标判定),然后再进行目标识别,分成了两步。

今天就来讲讲怎么简单操作该网络,以便后期有兴趣的朋友再次基础上做出改进。


一、git官网的py-faster-rcnn源码

终端输入:cd /home/**(您服务器的名字)

                    git clone --recursive .git

二、生成Cython模块

终端输入:cd /home/**(您服务器的名字)/py-faster-rcnn/lib
                   make

三、生成Caffe和pycaffe

终端输入:cd /home/**(您服务器的名字)/py-faster-rcnn/caffe-fast-rcnn
                    fig
打开fig,修改之处可以根据您自己需求修改(比如你要使用Python,GPU等功能)
保存退出。

终端输入:cd /home/**(您服务器的名字)/py-faster-rcnn/caffe-fast-rcnn

                    mkdir build
                    cd build
                    cmake ..(注意这是两个句点,不要忘记)
                    make all -j16("‐j16"是使用 CPU 的多核进行编译,可以提速,根据您自己

                    硬件调整)
                    make install
                    make runtest -j16

                    make pycaffe(编译pycaffe)

四、下载fetch_fast_rcnn_models

终端输入:cd /home/**(您服务器的名字)/py-faster-rcnn
                    ./data/scripts/fetch_faster_rcnn_models.sh

五、运行demo.py

终端输入:cd /home/home/**(您服务器的名字)/py-faster-rcnn/tools
                    ./demo.py

到这几,基本的都完成了,接下来就是实现自己的数据train和demo。


一、首先制作自己的数据集(如果您用公共数据集,那就可以忽略这步骤)

保留data/VOCdevkit2007/VOC2007/Annotations和ImageSets和JPEGImages文件夹名称,删除其中所有的文件(保留文件夹)。其中Annotations保存标签txt转换的xml文件,ImageSets保存、、、四个文件分别储存在layout、main和Segmentation文件夹中,最后JPEGImages保存所训练的数据。

然后,Annotations中xml文件的制作。该部分的代码我会放在公众平台的共享文件菜单中。最后做出来的效果就是如下所示:

最终生成的格式如下:

最后在ImageSets中的trainval文件中,根据你自己来划分!


二、修改参数和文件

  •  prototxt配置文件

models/pascal_voc/ZF/faster_rcnn_alt_opt文件夹下的5个文件,分别为:stage1_rpn_train.pt、stage1_fast_rcnn_train.pt、stage2_rpn_train.pt、stage2_fast_rcnn_train.pt和fast_rcnn_test.pt,修改格式如下:

(1)stage1_fast_rcnn_train.pt和stage2_fast_rcnn_train.pt修改参数:

num_class:2(识别1类+背景1类),cls_score中num_output:2,bbox_pred中num_output:8

(2)stage1_rpn_train.pt和stage2_rpn_train.pt修改参数:

num_class:2(识别1类+背景1类)

(3)fast_rcnn_test.pt修改参数:

cls_score中num_output:2,bbox_pred中num_output:8(只有这2个)

  • 修改lib/datasets/pascal_voc.py

self._classes = ('__background__', # always index 0  'zongzi')(只有这一类)

  • 修改lib/datasets/imdb.py

数据整理,在一行代码为:

boxes[:, 2] = widths[i] - oldx1 - 1  下加入代码:
 for b in range(len(boxes)):

      if boxes[b][2]< boxes[b][0]:

         boxes[b][0] = 0

  • 修改完pascal_voc.py和imdb.py后进入lib/datasets目录下删除原来的pascal_voc.pyc和imdb.pyc文件,重新生成这两个文件,因为这两个文件是python编译后的文件,系统会直接调用。

终端进入lib/datasets文件目录输入:

python(此处应出现python的版本)

>>>importpy_compile

>>>py_compilepile(r'imdb.py')

>>>py_compilepile(r'pascal_voc.py')


三、现在我们开始训练自己数据

终端进入py-faster-rcnn下输入:

./experiments/scripts/faster_rcnn_alt_opt.sh0 ZF pascal_voc


四、运行demo

运行demo,即在py-faster-rcnn文件夹下终端输入:

./tools/demo.py --net zf

其中修改/tools/demo.py为:

(1) CLASSES =('__background__',  'zongzi')

(2) NETS ={'vgg16': ('VGG16', 'VGG16_faster_rcnn_final.caffemodel'),

                     'zf': ('ZF', 'ZF_faster_rcnn_final.caffemodel')}


效果图:

注:有部分目标没有检测出来,可能是由于目标遮挡,重叠造成,所以往后需要我们大家做的就是,怎么去解决实际生活中遇到的种种问题,利用所学的知识和自己的创新去改进,优化!

由于今天是端午假,大家都会吃粽子,所以今天的目标检测就是“粽子”,通过各种渠道得到粽子的训练和测试数据集,最后得到如下部分的结果可视化图。

© THE END 

转载请联系本公众号获得授权

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

 往期推荐 

🔗

  • NAACL2022:(代码实践)好的视觉引导促进更好的特征提取,多模态命名实体识别(附源代码下载)

  • CVPR最佳检测:不再是方方正正的目标检测输出(附源码)

  • Poly-YOLO:更快,更精确的检测(主要解决Yolov3两大问题,附源代码)

  • “YoloV7”?目标检测算法终结篇:正式开源

  • CLCNet:用分类置信网络重新思考集成建模(附源代码下载)

  • Yolo-Fastest:轻量级yolo系列网络在各硬件实现工业级检测效果

  • 霸榜第一框架:工业检测,基于差异和共性的半监督方法用于图像表面缺陷检测

  • Fast YOLO:用于实时嵌入式目标检测(附论文下载)

  • 计算机视觉研究院:AI部署以及工业落地学习之路(文章较长,建议收藏)

  • 目标检测干货 | 多级特征重复使用大幅度提升检测精度(文末附论文下载)

  • 多尺度深度特征(下):多尺度特征学习才是目标检测精髓(论文免费下载)

  • 多尺度深度特征(上):多尺度特征学习才是目标检测精髓(干货满满,建议收藏)

本文发布于:2024-01-29 09:36:40,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170649220714360.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:端午节   不忘   实战   目标
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23