【论文系列研读】Superpixel: SLIC+SNN

阅读: 评论:0

【论文系列研读】Superpixel: SLIC+SNN

【论文系列研读】Superpixel: SLIC+SNN

1SLICPAMI2012

Title:SLIC Superpixels Compared to State-of-the-art Superpixel Methods

Author:Radhakrishna Achanta ... (École Polytechnique Fédérale de Lausanne,EPFL 瑞士联邦理工学院)

 

Other Algorithms for generating superpixels

1.Graph-based algorithms

  • treat each pixel as a node
  • Edge weights are similarity between neighboring pixels.
  • bipartite graph
  • finding optimal paths

2.Gradient-ascent-based algorithms

 

算法:

 

Advantages

  • Fastest
  • most memory efficient

 

结果

1. 自然图像

2. 2D and 3D EM images

 

2Superpixel Sampling Networks(ECCV2018)

Title:Superpixel Sampling Networks

Author:Varun Jampani ... (NVIDIA)

 

 

Why is SLIC not differentiable?

  • a non-differentiable nearest neighbor operation
  • Associate each pixel to the nearest superpixel center

Advantages:

soft-associations

  1. the first end-to-end trainable superpixel algorithm
  2. convert the nearest-neighbor operation into differentiable
  3. learning with flexible loss functions

 

算法

  • m:superpixel个数
  • QF=weighted sum of pixel features,距离为权值,对特征加权
  • Optional:求每个superpixel内的最大距离值,最小化这个值
  • column normalized Qt as Qˆt

Loss function:

           segmentation tasks: cross-entropy loss

           optical flow : L1-norm

           compactness loss :lower spatial variance

 

结果:

本文发布于:2024-01-29 10:48:21,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170649650314739.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:系列   论文   Superpixel   SLIC   SNN
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23