原文链接:
这篇博客主要用于记录2023年在一些顶会顶刊(AAAI、CVPR等)上发表的SNN相关论文,以及相关论文的链接及简单介绍。
更新SNN相关论文、动态信息,欢迎浏览讨论!
论文1: Reducing ANN-SNN Conversion Error through Residual Membrane Potential
论文2: Exploring Temporal Information Dynamics in Spiking Neural Networks
论文3: Deep Spiking Neural Networks with High Representation Similarity Model Visual Pathways of Macaque and Mouse
*
论文4: ESL-SNNs: An Evolutionary Structure Learning Strategy for Spiking Neural Networks
论文5: Complex Dynamic Neurons Improved Spiking Transformer Network for Efficient Automatic Speech Recognition
1、普通的一阶动力学神经元:相似于普通的IF神经元。
2、带有自适应阈值的一阶动力学神经元:发射阈值随时间衰减,同时,在接收到脉冲时阈值会增加。
3、二阶动力学神经元:
4、带有抑制性神经元的双神经元动力学:
论文6: Astromorphic Self-Repair of Neuromorphic Hardware Systems
论文7: Scaling Up Dynamic Graph Representation Learning via Spiking Neural Networks
论文1: Spike Count Maximization for Neuromorphic Vision Recognition
论文2: A Low Latency Adaptive Coding Spike Framework for Deep Reinforcement Learning
论文3: Learnable Surrogate Gradient for Direct Training Spiking Neural Networks
论文4: Spatial-Temporal Self-Attention for Asynchronous Spiking Neural Networks
论文5: Enhancing Efficient Continual Learning with Dynamic Structure Development of Spiking Neural Networks
论文1: Adaptive Axonal Delays in feedforward spiking neural networks for accurate spoken word recognition
论文2: Joint ANN-SNN Co-training for Object Localization and Image Segmentation
论文3: Training Robust Spiking Neural Networks with ViewPoint Transform and SpatioTemporal Stretching
论文4: Leveraging Sparsity with Spiking Recurrent Neural Networks for Energy-Efficient Keyword Spotting
*
论文5: Training Robust Spiking Neural Networks on Neuromorphic Data with Spatiotemporal Fragments
论文6: Training Stronger Spiking Neural Networks with Biomimetic Adaptive Internal Association Neurons
论文7: In-Sensor & Neuromorphic Computing Are all You Need for Energy Efficient Computer Vision
*
中国航天科工集团公司智能科学技术研究院研究人员发表于Pattern Recognition
将网络(ANN和SNN)分为多个stage,每个stage后跟着全局平均池化和全连接层,每一个输出都和label计算交叉熵loss。
每一个stage,ANN的输出作为label和SNN对应的输出计算KL散度loss。ANN的输出进行detach处理。
ANN和SNN提取到的特征可能有不同的标准化幅度。每一个stage,ANN的输出作为label和SNN对应的输出计算L2 norm loss(向量的模的平方,不开根号)。ANN的输出进行detach处理。
前几个stage的输出计算loss能够缓和SNN中由于梯度爆炸/消失引起的前几层网络无法训练的问题。
最终的训练loss为:
提出了weight-factorization training (WFT):对ANN和SNN的参数进行因子分解,使其具有相同的奇异向量(U和V),但是各自的奇异值可以不同。
U、V以及ANN和SNN的对角矩阵基于梯度下降进行优化。
论文1: Adaptive Smoothing Gradient Learning for Spiking Neural Networks
论文2: A Unified Optimization Framework of ANN-SNN Conversion: Towards Optimal Mapping from Activation Values to Firing Rates
论文3: Surrogate Module Learning: Reduce the Gradient Error Accumulation in Training Spiking Neural Networks
论文1: Deep Directly-Trained Spiking Neural Networks for Object Detection
论文2: Towards Memory- and Time-Efficient Backpropagation for Training Spiking Neural Networks
论文3: Masked Spiking Transformer
论文4: Unleashing the Potential of Spiking Neural Networks with Dynamic Confidence
论文5: Membrane Potential Batch Normalization for Spiking Neural Networks
论文6: Inherent Redundancy in Spiking Neural Networks
论文7: Temporal-Coded Spiking Neural Networks with Dynamic Firing Threshold: Learning with Event-Driven Backpropagation
论文8: RMP-Loss: Regularizing Membrane Potential Distribution for Spiking Neural Networks
论文9: Efficient Converted Spiking Neural Network for 3D and 2D Classification
论文10: SSF: Accelerating Training of Spiking Neural Networks with Stabilized Spiking Flow
论文1: Spiking PointNet: Spiking Neural Networks for Point Clouds
论文2: Spike-driven Transformer
论文3: Evolving Connectivity for Recurrent Spiking Neural Networks
论文4: Exploring Loss Functions for Time-based Training Strategy in Spiking Neural Networks
论文5: EICIL: Joint excitatory inhibitory cycle iteration learning for deep spiking neural networks
论文6: Addressing the speed-accuracy simulation trade-off for adaptive spiking neurons
论文7: Parallel Spiking Neurons with High Efficiency and Ability to Learn Long-term Dependencies
论文8: Unsupervised Optical Flow Estimation with Dynamic Timing Representation for Spike Camera
论文9: Meta-learning families of plasticity rules in recurrent spiking networks using simulation-based inference
论文10: Temporal Conditioning Spiking Latent Variable Models of the Neural Response to Natural Visual Scenes
论文11: Enhancing Adaptive History Reserving by Spiking Convolutional Block Attention Module in Recurrent Neural Networks
论文12: Trial matching: capturing variability with data-constrained spiking neural networks
论文13: SparseProp: Efficient Event-Based Simulation and Training of Sparse Recurrent Spiking Neural Networks
论文14: SEENN: Towards Temporal Spiking Early Exit Neural Networks
论文1: Bridging the Gap between ANNs and SNNs by Calibrating Offset Spikes
论文2: A Unified Framework for Soft Threshold Pruning
论文3: Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient Unsupervised Learning: Theory and Design Principles
论文4: Spiking Convolutional Neural Networks for Text Classification
论文5: Spikformer: When Spiking Neural Network Meets Transformer
本文出自于CSDN-lan人啊,转载请注明!
本文发布于:2024-01-29 10:49:45,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170649659014748.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |