Driving Point Resistances | Formulas |
---|---|
looking into the base ( R b b R_{bb} Rbb) | r π + ( 1 + β ) R E r o + R C 1 + β r o + R C + R E r_pi+(1+beta)R_Efrac{r_o+frac{R_C}{1+beta}}{r_o+R_C+R_E} rπ+(1+β)REro+RC+REro+1+βRC |
looking into the collector ( R c c R_{cc} Rcc) | ( R B ′ / / R E ) + r o + β R B ′ r o ( R B ′ / / R E ) (R_B'//R_E)+r_o+frac{beta}{R_B'}r_o(R_B'//R_E) (RB′//RE)+ro+RB′βro(RB′//RE) |
looking into the emitter ( R e e R_{ee} Ree) | R B ′ ( r o + R C ) R B ′ + R C + ( 1 + β ) r o frac{R_B'(r_o+R_C)}{R_B'+R_C+(1+beta)r_o} RB′+RC+(1+β)roRB′(ro+RC) |
Short Circuit Transconductance ( G m G_m Gm) | Formulas |
---|---|
common emitter ( G e e G_{ee} Gee) | − 1 − R E β r o R B ′ β + R E ( 1 α + R E β r o ) -frac{1-frac{R_E}{beta r_o}}{frac{R_B'}{beta}+R_Eleft(frac{1}{alpha}+frac{R_E}{beta r_o}right)} −βRB′+RE(α1+βroRE)1−βroRE |
common base ( G b b G_{bb} Gbb) | 1 R E + ( r o / / R B ′ β ) + R E R B ′ ( r o / / R B ′ β ) frac{1}{R_E+left(r_o//frac{R_B'}{beta}right)+frac{R_E}{R_B'}left(r_o//frac{R_B'}{beta}right)} RE+(ro//βRB′)+RB′RE(ro//βRB′)1 |
common collector ( G c c G_{cc} Gcc) | R C + ( 1 + β ) r o R B ′ ( R C + r o ) frac{R_C+(1+beta)r_o}{R_B'(R_C+r_o)} RB′(RC+ro)RC+(1+β)ro |
Driving Point Resistances | Formulas |
---|---|
looking into the gate ( R g g R_{gg} Rgg) | ∞ infty ∞ |
looking into the drain ( R d d R_{dd} Rdd) | R D / / ( r o + R S + g m r o R S ) R_D//(r_o+R_S+g_mr_oR_S) RD//(ro+RS+gmroRS) ≈ R D / / ( r o ( 1 + g m R S ) ) approx R_D//(r_o(1+g_mR_S)) ≈RD//(ro(1+gmRS)) ( r o ≫ R S r_o gg R_S ro≫RS, note that R S R_S RS shorted in common gate) |
looking into the source ( R s s R_{ss} Rss) | R S / / r o + R D 1 + g m r o R_S//frac{r_o+R_D}{1+g_mr_o} RS//1+gmroro+RD ≈ R S / / ( 1 g m + R D g m r o ) approx R_S//(frac{1}{g_m}+frac{R_D}{g_mr_o}) ≈RS//(gm1+gmroRD) ( r o ≫ 1 g m r_o gg frac{1}{g_m} ro≫gm1) |
Short Circuit Transconductance ( G m G_m Gm) | Formulas |
---|---|
common source ( G s s G_{ss} Gss) | g m r o r o + R S + g m r o R S ≈ g m 1 + g m R S ( r o ≫ R S ) frac{g_mr_o}{r_o+R_S+g_mr_oR_S}approxfrac{g_m}{1+g_mR_S} (r_o gg R_S) ro+RS+gmroRSgmro≈1+gmRSgm(ro≫RS) |
common gate ( G g g G_{gg} Ggg) | g m + 1 r o g_m+frac{1}{r_o} gm+ro1 |
common drain ( G d d G_{dd} Gdd) | g m r o r o + R D g_mfrac{r_o}{r_o+R_D} gmro+RDro |
Current Gain ( A i = G m R i A_i = G_mR_i Ai=GmRi) | Formulas |
---|---|
common source ( A i , c s A_{i,cs} Ai,cs) | ∞ infty ∞ |
common gate ( A i , c g A_{i,cg} Ai,cg) | 1 1 1 |
common drain ( A i , c d A_{i,cd} Ai,cd) | ∞ infty ∞ |
Voltage Gain ( A v = G m R o A_v = G_mR_o Av=GmRo) | Formulas |
---|---|
common source ( A v , c s A_{v,cs} Av,cs) | g m ( r o / / R D ) g_m(r_o//R_D) gm(ro//RD) |
common gate ( A v , c s A_{v,cs} Av,cs) | g m ( r o / / R D ) g_m(r_o//R_D) gm(ro//RD) |
common drain ( A v , c s A_{v,cs} Av,cs) | 1 1 1 |
本文发布于:2024-01-29 14:08:13,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170650849515823.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |