window11配置深度学习环境

阅读: 评论:0

window11配置深度学习环境

window11配置深度学习环境

Anaconda+PyCharm+CUDA+CUDNN+PyTorch

1.Anaconda安装

下载路径:/
安装方式:以管理员身份安装
中间选项:





cmd中输入conda -V查看版本,判断conda是否安装完成。

2.PyCharm安装

下载路径:/,下载社区版即可
安装方式:以管理员身份运行
中间选项:





3.CUDA安装

查看CUDA驱动版本:在命令行窗口键入nvidia-smi,查看CUDA驱动版本号


注意:确认NVCUDA的文件版本,如果文件版本是30以上的,CUDA的运行库版本就要是11以上的,两个版本要一致,据说运行版本不能超过驱动版本。
哔哩哔哩图标的左侧


下载路径:

选择Archive of Previous CUDA Releases,查看历史版本
找到适合自己系统及版本的CUDA,确认好Version是win10还是win11,有的版本只有win10,没有win11。
Installer Type选择exe(local)


安装方式:以管理员身份运行
中间选项:







cmd,输入nvcc -V,查看安装结果


4.CUDNN安装

下载路径:
注意:下载需要注册,好像还要加入社区,下载的版本要和CUDA一致
下载下来的是个压缩包,解压后如下

把前面三个文件夹复制到CUDA的文件夹中


5.pytorch安装

安装版本:在官网找历史命令行,要与安装的CUDA版本一致,当前pytorch最高支持CUDA11.3,超过11.3的可能要百度确定了,我的11.4可以用11.3的命令行去下载。
下载时要注意用镜像源,这样会快一点。
首先在命令行窗口输入如下命令:

conda -v//查看版本号
activate//激活,进入base环境
conda create -n name python=3.7//创建名字为name,版本为3.7.x的python环境,如果已经创建,会提示删除原先环境再创建,输入y即可
conda activate name//激活创建的环境

之后下载pytorch

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c /
注:我这里直接用了镜像源,把官网命令行最后的pytorch换成镜像源路径即可

本文发布于:2024-01-29 14:08:39,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170650852115826.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:深度   环境
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23