参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
离散系统特点:系统中的各个变量被处理成为只在离散时刻取值,其状态空间描述只反映离散时刻的变量组间的因果关系和转换关系,因而这类系统通常称为离散时间系统,简称离散系统;
线性离散系统的动态方程可以利用系统的差分方程建立,可以利用线性连续动态方程的离散化得到;
经典控制理论中离散系统通常用差分方程或脉冲传递函数描述,单输入-单输出线性定常离散系统差分方程的一般形式为:
y ( k + n ) + a n − 1 y ( k + n − 1 ) + ⋯ + a 1 y ( k + 1 ) + a 0 y ( k ) = b n u ( k + n ) + b n − 1 u ( k + n − 1 ) + ⋯ + b 1 u ( k + 1 ) + b 0 u ( k ) begin{aligned} &y(k+n)+a_{n-1}y(k+n-1)+dots+a_1y(k+1)+a_0y(k)\\ =&b_nu(k+n)+b_{n-1}u(k+n-1)+dots+b_1u(k+1)+b_0u(k) end{aligned} =y(k+n)+an−1y(k+n−1)+⋯+a1y(k+1)+a0y(k)bnu(k+n)+bn−1u(k+n−1)+⋯+b1u(k+1)+b0u(k)
其中: k k k表示 k T kT kT时刻, T T T为采样周期, y ( k ) , u ( k ) y(k),u(k) y(k),u(k)分别为 k T kT kT时刻的输出量和输入量; a i , b i ( i = 0 , 1 , 2 , … , n , 且 a n = 1 ) a_i,b_i(i=0,1,2,dots,n,且a_n=1) ai,bi(i=0,1,2,…,n,且an=1)为表征系统特性的常系数;
考虑初始条件为零时的 z z z变换关系有:
Z [ y ( k ) ] = Y ( z ) , Z [ y ( k + i ) ] = z i Y ( z ) Z[y(k)]=Y(z),Z[y(k+i)]=z^iY(z) Z[y(k)]=Y(z),Z[y(k+i)]=ziY(z)
对差分方程取 z z z变换,可得:
G ( z ) = Y ( z ) U ( z ) = b n z n + b n − 1 z n − 1 + ⋯ + b 1 z + b 0 z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 = b n + β n − 1 z n − 1 + ⋯ + β 1 z + β 0 z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 = b n + N ( z ) D ( z ) begin{aligned} G(z)&=frac{Y(z)}{U(z)}=frac{b_nz^n+b_{n-1}z^{n-1}+dots+b_1z+b_0}{z^n+a_{n-1}z^{n-1}+dots+a_1z+a_0}\\ &=b_n+frac{beta_{n-1}z^{n-1}+dots+beta_1z+beta_0}{z^n+a_{n-1}z^{n-1}+dots+a_1z+a_0}=b_n+frac{N(z)}{D(z)} end{aligned} G(z)=U(z)Y(z)=zn+an−1zn−1+⋯+a1z+a0bnzn+bn−1zn−1+⋯+b1z+b0=bn+zn+an−1zn−1+⋯+a1z+a0βn−1zn−1+⋯+β1z+β0=bn+D(z)N(z)
G ( z ) G(z) G(z)称为脉冲传递函数;
N ( z ) / D ( z ) N(z)/D(z) N(z)/D(z)串联分解,引入中间变量 Q ( z ) Q(z) Q(z),有:
z n Q ( z ) + a n − 1 z n − 1 Q ( z ) + ⋯ + a 1 z Q ( z ) + a 0 Q ( z ) = U ( z ) Y ( z ) = β n − 1 z n − 1 Q ( z ) + ⋯ + β 1 z Q ( z ) + β 0 Q ( z ) begin{aligned} &z^nQ(z)+a_{n-1}z^{n-1}Q(z)+dots+a_1zQ(z)+a_0Q(z)=U(z)\\ &Y(z)=beta_{n-1}z^{n-1}Q(z)+dots+beta_1zQ(z)+beta_0Q(z) end{aligned} znQ(z)+an−1zn−1Q(z)+⋯+a1zQ(z)+a0Q(z)=U(z)Y(z)=βn−1zn−1Q(z)+⋯+β1zQ(z)+β0Q(z)
最后向量-矩阵形式为:
[ x 1 ( k + 1 ) x 2 ( k + 1 ) ⋮ x n − 1 ( k + 1 ) x n ( k + 1 ) ] = [ 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 − a 0 − a 1 − a 2 ⋯ − a n − 1 ] [ x 1 ( k ) x 2 ( k ) ⋮ x n − 1 ( k ) x n ( k ) ] + [ 0 0 ⋮ 0 1 ] u ( k ) begin{bmatrix} x_1(k+1)\ x_2(k+1)\ vdots\ x_{n-1}(k+1)\ x_n(k+1) end{bmatrix}= begin{bmatrix} 0 & 1 & 0 & cdots & 0\ 0 & 0 & 1 & cdots & 0\ vdots & vdots & vdots & & vdots\ 0 & 0 & 0 & cdots & 1\ -a_0 & -a_1 & -a_2 & cdots & -a_{n-1} end{bmatrix} begin{bmatrix} x_1(k)\ x_2(k)\ vdots\ x_{n-1}(k)\ x_n(k) end{bmatrix}+ begin{bmatrix} 0\ 0\ vdots\ 0\ 1 end{bmatrix}u(k) x1(k+1)x2(k+1)⋮xn−1(k+1)xn(k+1) = 00⋮0−a010⋮0−a101⋮0−a2⋯⋯⋯⋯00⋮1−an−1 x1(k)x2(k)⋮xn−1(k)xn(k) + 00⋮01 u(k)
y ( k ) = [ β 0 β 1 ⋯ β n − 1 ] x ( k ) + b n u ( k ) y(k)=begin{bmatrix}beta_0 & beta_1 & cdots & beta_{n-1}end{bmatrix}x(k)+b_nu(k) y(k)=[β0β1⋯βn−1]x(k)+bnu(k)
简记:
x ( k + 1 ) = G x ( k ) + h u ( k ) y ( k ) = c x ( k ) + d u ( k ) begin{aligned} &x(k+1)=Gx(k)+hu(k)\\ &y(k)=cx(k)+du(k) end{aligned} x(k+1)=Gx(k)+hu(k)y(k)=cx(k)+du(k)
其中: G G G为友矩阵, G , h G,h G,h为可控标准型;
离散系统状态方程描述了 ( k + 1 ) T (k+1)T (k+1)T时刻的状态与 k T kT kT时刻的状态及输入量之间的关系,其输出方程描述了 k T kT kT时刻输出量与 k T kT kT时刻的状态及输入量之间的关系;
线性定常多输入-多输出离散系统的动态方程为:
x ( k + 1 ) = G x ( k ) + H u ( k ) y ( k ) = C x ( k ) + D u ( k ) begin{aligned} &x(k+1)=Gx(k)+Hu(k)\\ &y(k)=Cx(k)+Du(k) end{aligned} x(k+1)=Gx(k)+Hu(k)y(k)=Cx(k)+Du(k)
已知定常连续系统状态方程: x ˙ = A x + B u dot{x}=Ax+Bu x˙=Ax+Bu在 x ( t 0 ) x(t_0) x(t0)及 u ( t ) u(t) u(t)作用下的解为:
x ( t ) = Φ ( t − t 0 ) x ( t 0 ) + ∫ t 0 T Φ ( t − τ ) B u ( τ ) d τ x(t)=Phi(t-t_0)x(t_0)+int_{t_0}^TPhi(t-tau)Bu(tau){rm d}tau x(t)=Φ(t−t0)x(t0)+∫t0TΦ(t−τ)Bu(τ)dτ
离散化状态方程为:
x ( k + 1 ) = Φ ( T ) x ( k ) + G ( T ) u ( k ) x(k+1)=Phi(T)x(k)+G(T)u(k) x(k+1)=Φ(T)x(k)+G(T)u(k)
其中:
G ( T ) = ∫ 0 T Φ ( τ ′ ) B d τ ′ 和 Φ ( T ) = Φ ( t ) ∣ t = T G(T)=int_0^TPhi(tau')B{rm d}tau'和 Phi(T)=Phi(t)|_{t=T} G(T)=∫0TΦ(τ′)Bdτ′和Φ(T)=Φ(t)∣t=T
离散化系统的输出方程:
y ( k ) = C x ( k ) + D u ( k ) y(k)=Cx(k)+Du(k) y(k)=Cx(k)+Du(k)
离散化状态方程的解,亦称离散化状态转移方程:
x ( k ) = Φ k ( T ) x ( 0 ) + ∑ i = 0 k − 1 Φ k − 1 − i ( T ) G ( T ) u ( i ) x(k)=Phi^k(T)x(0)+sum_{i=0}^{k-1}Phi^{k-1-i}(T)G(T)u(i) x(k)=Φk(T)x(0)+i=0∑k−1Φk−1−i(T)G(T)u(i)
当 u ( i ) = 0 ( i = 0 , 1 , ⋯ , k − 1 ) u(i)=0(i=0,1,cdots,k-1) u(i)=0(i=0,1,⋯,k−1)时,有:
x ( k ) = Φ k ( T ) x ( 0 ) = Φ ( k T ) x ( 0 ) = Φ ( k ) x ( 0 ) x(k)=Phi^k(T)x(0)=Phi(kT)x(0)=Phi(k)x(0) x(k)=Φk(T)x(0)=Φ(kT)x(0)=Φ(k)x(0)
其中: Φ ( k ) Phi(k) Φ(k)称为离散化系统动态转移矩阵;
输出方程为:
y ( k ) = C x ( k ) + D u ( k ) = C Φ k ( T ) x ( 0 ) + C ∑ i = 0 k − 1 Φ k − 1 − i ( T ) G ( T ) u ( i ) + D u ( k ) y(k)=Cx(k)+Du(k)=CPhi^k(T)x(0)+Csum_{i=0}^{k-1}Phi^{k-1-i}(T)G(T)u(i)+Du(k) y(k)=Cx(k)+Du(k)=CΦk(T)x(0)+Ci=0∑k−1Φk−1−i(T)G(T)u(i)+Du(k)
使用递推法可得离散动态方程的解:
x ( k ) = G k x ( 0 ) + ∑ i = 0 k − 1 G k − 1 − i H u ( i ) y ( k ) = C G k x ( 0 ) + C ∑ i = 0 k − 1 G k − 1 − i H u ( i ) + D u ( k ) begin{aligned} &x(k)=G^kx(0)+sum_{i=0}^{k-1}G^{k-1-i}Hu(i)\ &y(k)=CG^kx(0)+Csum_{i=0}^{k-1}G^{k-1-i}Hu(i)+Du(k) end{aligned} x(k)=Gkx(0)+i=0∑k−1Gk−1−iHu(i)y(k)=CGkx(0)+Ci=0∑k−1Gk−1−iHu(i)+Du(k)
式中: G k G^k Gk表示 k k k个 G G G相乘;
实例分析:
E x a m p l e 8 : {rm Example8:} Example8: 已知连续时间系统的状态方程为:
x ˙ = [ 0 1 − 2 − 3 ] x + [ 0 1 ] u dot{x}= begin{bmatrix} 0 & 1\ -2 & -3 end{bmatrix}x+ begin{bmatrix} 0\ 1 end{bmatrix}u x˙=[0−21−3]x+[01]u
设 T = 1 T=1 T=1,求相应离散时间状态方程.
解:
s I − A = [ s 0 0 s ] − [ 0 1 − 2 − 3 ] = [ s − 1 2 s + 3 ] sI-A= begin{bmatrix} s & 0\ 0 & s end{bmatrix}- begin{bmatrix} 0 & 1 \ -2 & -3 end{bmatrix}= begin{bmatrix} s & -1 \ 2 & s+3 end{bmatrix} sI−A=[s00s]−[0−21−3]=[s2−1s+3]
( s I − A ) − 1 = a d j ( s I − A ) ∣ s I − A ∣ = 1 ( s + 1 ) ( s + 2 ) [ s + 3 1 − 2 s ] = [ 2 s + 1 − 1 s + 2 1 s + 1 − 1 s + 2 − 2 s + 1 + 2 s + 2 − 1 s + 1 + 2 s + 2 ] begin{aligned} (sI-A)^{-1}&=frac{{rm adj}(sI-A)}{|sI-A|}=frac{1}{(s+1)(s+2)} begin{bmatrix} s+3 & 1 \ -2 & s end{bmatrix}= begin{bmatrix} displaystylefrac{2}{s+1}-displaystylefrac{1}{s+2} & displaystylefrac{1}{s+1}-displaystylefrac{1}{s+2}\\ displaystylefrac{-2}{s+1}+displaystylefrac{2}{s+2} & displaystylefrac{-1}{s+1}+displaystylefrac{2}{s+2} end{bmatrix} end{aligned} (sI−A)−1=∣sI−A∣adj(sI−A)=(s+1)(s+2)1[s+3−21s]= s+12−s+21s+1−2+s+22s+11−s+21s+1−1+s+22
Φ ( t ) = L − 1 [ ( s I − A ) − 1 ] = [ 2 e − t − e − 2 t e − t − e − 2 t − 2 e − t + 2 e − 2 t − e − t + 2 e − 2 t ] Φ ( T ) = Φ ( t ) ∣ t = T = 1 = [ 0.6004 0.2325 − 0.4651 − 0.0972 ] begin{aligned} &Phi(t)=L^{-1}left[(sI-A)^{-1}right]= begin{bmatrix} 2{rm e}^{-t}-{rm e}^{-2t} & {rm e}^{-t}-{rm e}^{-2t}\ -2{rm e}^{-t}+2{rm e}^{-2t} & -{rm e}^{-t}+2{rm e}^{-2t} end{bmatrix}\\ &Phi(T)=Phi(t)|_{t=T=1}= begin{bmatrix} 0.6004 & 0.2325\ -0.4651 & -0.0972 end{bmatrix} end{aligned} Φ(t)=L−1[(sI−A)−1]=[2e−t−e−2t−2e−t+2e−2te−t−e−2t−e−t+2e−2t]Φ(T)=Φ(t)∣t=T=1=[0.6004−0.46510.2325−0.0972]
G ( t ) = ∫ 0 T Φ ( τ ) B d τ = ∫ 0 T [ e − τ − e − 2 τ − e − τ + 2 e − 2 τ ] d τ = [ 1 2 − e − T + 1 2 e − 2 T e − T − e − 2 T ] ⇒ G ( T ) ∣ T = 1 = [ 0.1998 0.2325 ] G(t)=int_0^TPhi(tau)B{rm d}tau=int_0^Tbegin{bmatrix}{rm e}^{-tau}-{rm e}^{-2tau}\-{rm e}^{-tau}+2{rm e}^{-2tau}end{bmatrix}{rm d}tau= begin{bmatrix} displaystylefrac{1}{2}-{rm e}^{-T}+frac{1}{2}{rm e}^{-2T}\ {rm e}^{-T}-{rm e}^{-2T} end{bmatrix}Rightarrow{G(T)|_{T=1}=begin{bmatrix}0.1998\0.2325end{bmatrix}} G(t)=∫0TΦ(τ)Bdτ=∫0T[e−τ−e−2τ−e−τ+2e−2τ]dτ=[21−e−T+21e−2Te−T−e−2T]⇒G(T)∣T=1=[0.19980.2325]
本文发布于:2024-01-29 20:07:49,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170653007117963.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |