根据一系列的三维空间点,求解该点集合的最优平面,确定该平面的法向量。
根据点的空间位置 ( X i , Y i , Z i ) ( X_{i},Y_{i},Z_{i}) (Xi,Yi,Zi),假设最优平面的方程为:
c o s α X + c o s β Y + c o s γ Z + p = 0 cos alpha X + cos beta Y + cos gamma Z + p = 0 cosαX+cosβY+cosγZ+p=0
式中 c o s α , c o s β , c o s γ cosalpha,cosbeta,cosgamma cosα,cosβ,cosγ为平面上点 ( X , Y , Z ) (X,Y,Z) (X,Y,Z)处的法向量的方向余弦, ∣ p ∣ |p| ∣p∣为原点到平面的距离。上式也可改写为:
a x + b y + c z = d ( d ≥ 0 ) , a 2 + b 2 + c 2 = 1 ax + by + cz = d(d geq 0), a^{2} + b^{2}+c^{2}=1 ax+by+cz=d(d≥0),a2+b2+c2=1
求参数 a b c d 即可求出空间点所对应的最优平面。
————————————————————————————————————
由空间点集合 ( X i , Y i , Z i ) , i ∈ 1 , 2 , 3 … … n (X_{i},Y_{i},Z_{i}),i in 1,2,3……n (Xi,Yi,Zi),i∈1,2,3……n,及平面方程 a x + b y + c z = d ( d ≥ 0 ) , a 2 + b 2 + c 2 = 1 ax + by + cz = d(d geq 0), a^{2} + b^{2}+c^{2}=1 ax+by+cz=d(d≥0),a2+b2+c2=1,可得任意空间点到该平面的距离为:
d i = ∣ a x i + b y i + c z i − d ∣ d_{i} = |ax_{i} + by_{i} + cz_{i}-d| di=∣axi+byi+czi−d∣
要获得最优的平面,即所有空间点到该平面的距离最小:
d = min ∑ n = 0 N d n 2 d =min sum^{N}_{n=0} d_{n}^{2} d=minn=0∑Ndn2
前提条件为 a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1。
因此构建误差函数:
f = ∑ n = 0 N ( d n 2 − λ ( a 2 + b 2 + c 2 ) f = sum^{N}_{n=0}(d_{n}^{2} - lambda(a^{2} + b^{2}+c^{2}) f=n=0∑N(dn2−λ(a2+b2+c2)
————————————————————————————————————
求极值:
对参数a、b、c、d求偏导:
∂ f ∂ d = − 2 d n = − 2 ∗ ∑ n = 0 N ( a x n + b y n + c z n − d ) frac{partial f}{partial d} = -2 d_{n} = -2 * sum^{N}_{n=0}(ax_{n} + by_{n} + cz_{n}-d) ∂d∂f=−2dn=−2∗n=0∑N(axn+byn+czn−d)
所以当 d = a ∑ n = 0 N X n n + b ∑ n = 0 N Y n n + c ∑ n = 0 N Z n n d=a frac{ sum^{N}_{n=0} X_{n}}{n} + b frac{ sum^{N}_{n=0} Y_{n}}{n} + c frac{ sum^{N}_{n=0} Z_{n}}{n} d=an∑n=0NXn+bn∑n=0NYn+cn∑n=0NZn。
可以发现, ∑ n = 0 N X n n frac{ sum^{N}_{n=0} X_{n}}{n} n∑n=0NXn就是均值!
此时,距离d可以改写为:
d i = ∣ a x i + b y i + c z i − d ∣ = ∣ a ( X i − ∑ n = 0 N X n n ) + b ( Y i − ∑ n = 0 N Y n n ) + c ( Z i − ∑ n = 0 N Z n n ) ∣ = ∣ a ( X i − X ˉ ) + b ( Y i − Y ˉ ) + c ( Z i − Z ˉ ) ∣ begin{aligned} d_{i} &= |ax_{i} + by_{i} + cz_{i}-d| \ &= |a(X_{i} - frac{ sum^{N}_{n=0} X_{n}}{n} ) + b(Y_{i} - frac{ sum^{N}_{n=0} Y_{n}}{n} ) + c(Z_{i} - frac{ sum^{N}_{n=0} Z_{n}}{n} )| \ &= |a (X_{i}-bar{X}) + b (Y_{i}-bar{Y}) + c (Z_{i}-bar{Z})| end{aligned} di=∣axi+byi+czi−d∣=∣a(Xi−n∑n=0NXn)+b(Yi−n∑n=0NYn)+c(Zi−n∑n=0NZn)∣=∣a(Xi−Xˉ)+b(Yi−Yˉ)+c(Zi−Zˉ)∣
继续对a求偏导可得:
∂ f ∂ a = 2 ∑ n = 0 N ( a ( X i − X ˉ ) + b ( Y i − Y ˉ ) + c ( Z i − Z ˉ ) ) ( X i − X ˉ ) − 2 λ a frac{partial f}{partial a} = 2 sum^{N}_{n=0}(a (X_{i}-bar{X}) + b (Y_{i}-bar{Y}) + c (Z_{i}-bar{Z}))(X_{i}-bar{X}) -2 lambda a ∂a∂f=2n=0∑N(a(Xi−Xˉ)+b(Yi−Yˉ)+c(Zi−Zˉ))(Xi−Xˉ)−2λa
令 △ X i = ( X i − X ˉ ) , △ Y i = ( Y i − Y ˉ ) , △ Z i = ( Z i − Z ˉ ) triangle X_{i} =( X_{i}-bar{X}),triangle Y_{i} =( Y_{i}-bar{Y}),triangle Z_{i} =( Z_{i}-bar{Z}) △Xi=(Xi−Xˉ),△Yi=(Yi−Yˉ),△Zi=(Zi−Zˉ),则:
∂ f ∂ a = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ X i − 2 λ a = 0 frac{partial f}{partial a} = 2 sum^{N}_{n=0}(a triangle X_{i} + b triangle Y_{i} + c triangle Z_{i})triangle X_{i}-2 lambda a = 0 ∂a∂f=2n=0∑N(a△Xi+b△Yi+c△Zi)△Xi−2λa=0
同理可得:
∂ f ∂ b = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ Y i − 2 λ b = 0 frac{partial f}{partial b} = 2 sum^{N}_{n=0}(a triangle X_{i} + b triangle Y_{i} + c triangle Z_{i})triangle Y_{i}-2 lambda b = 0 ∂b∂f=2n=0∑N(a△Xi+b△Yi+c△Zi)△Yi−2λb=0
∂ f ∂ c = 2 ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) △ Z i − 2 λ c = 0 frac{partial f}{partial c} = 2 sum^{N}_{n=0}(a triangle X_{i} + b triangle Y_{i} + c triangle Z_{i})triangle Z_{i}-2 lambda c = 0 ∂c∂f=2n=0∑N(a△Xi+b△Yi+c△Zi)△Zi−2λc=0
将三式整理成矩阵形式:
[ ∑ △ X i △ X i ∑ △ X i △ Y i ∑ △ X i △ Z i ∑ △ X i △ Y i ∑ △ Y i △ Y i ∑ △ Y i △ Z i ∑ △ X i △ Z i ∑ △ Y i △ Z i ∑ △ Z i △ Z i ] ⋅ [ a b c ] = λ ⋅ [ a b c ] begin{bmatrix} sum triangle X_{i} triangle X_{i} && sum triangle X_{i} triangle Y_{i} && sum triangle X_{i} triangle Z_{i} \ sum triangle X_{i} triangle Y_{i} && sum triangle Y_{i} triangle Y_{i} && sum triangle Y_{i} triangle Z_{i} \ sum triangle X_{i} triangle Z_{i} && sum triangle Y_{i} triangle Z_{i} && sum triangle Z_{i} triangle Z_{i} end{bmatrix} cdot begin{bmatrix} a \ b \c end{bmatrix} = lambda cdot begin{bmatrix} a \ b \c end{bmatrix} ⎣⎡∑△Xi△Xi∑△Xi△Yi∑△Xi△Zi∑△Xi△Yi∑△Yi△Yi∑△Yi△Zi∑△Xi△Zi∑△Yi△Zi∑△Zi△Zi⎦⎤⋅⎣⎡abc⎦⎤=λ⋅⎣⎡abc⎦⎤
这个式子就是矩阵的特征值与特征向量的定义式。最小特征值对应的特征向量即为满足条件 a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1的解。
——————————————————
假设解为X = (a,b,c), a 2 + b 2 + c 2 = 1 a^{2} + b^{2}+c^{2}=1 a2+b2+c2=1。可以得 |X| = 1 ,又因为 A x = λ x Ax=lambda x Ax=λx,因此
∣ ( A x , x ) ∣ = ∣ ( λ x , x ) ∣ = ∣ λ ( x , x ) ∣ = λ |(Ax,x)| =| (lambda x,x)| = |lambda (x,x)| = lambda ∣(Ax,x)∣=∣(λx,x)∣=∣λ(x,x)∣=λ
λ lambda λ即为(Ax,x)的模长,求模长为:
( A x ) T ⋅ x = x T A T x = x T A x (Ax)^{T} cdot x = x^{T} A^{T} x = x^{T}Ax (Ax)T⋅x=xTATx=xTAx
化简就可以得到:
λ = ∑ n = 0 N ( a △ X i + b △ Y i + c △ Z i ) 2 = ∑ n = 0 N d n 2 lambda =sum^{N}_{n=0}(a triangle X_{i} + b triangle Y_{i} + c triangle Z_{i})^{2} = sum^{N}_{n=0}d_{n}^{2} λ=n=0∑N(a△Xi+b△Yi+c△Zi)2=n=0∑Ndn2
所以求距离最小就变成了 λ lambda λ最小,因此最小特征值对应的特征向量为平面的法向量。
其实我是这么理解的,矩阵中平面的法向量与平面上的所有向量的点乘积为0,也就是最不重要的那一部分。对应到特征值上,那就是最小特征值啦~~(个人见解)
本文发布于:2024-01-30 04:32:48,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170656037219242.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |