第九天:Python基础进阶:从函数到高级魔法方法(描述符 定制序列 迭代器 )

阅读: 评论:0

第九天:Python基础进阶:从函数到高级魔法方法(描述符  定制序列 迭代器 )

第九天:Python基础进阶:从函数到高级魔法方法(描述符 定制序列 迭代器 )

描述符

描述符就是将某种特殊类型的类的实例指派给另一个类的属性。

  • __get__(self, instance, owner)用于访问属性,它返回属性的值。
  • __set__(self, instance, value)将在属性分配操作中调用,不返回任何内容。
  • __del__(self, instance)控制删除操作,不返回任何内容。
class MyDecriptor:def __get__(self, instance, owner):print('__get__', self, instance, owner)def __set__(self, instance, value):print('__set__', self, instance, value)def __delete__(self, instance):print('__delete__', self, instance)class Test:x = MyDecriptor()t = Test()
t.x
# __get__ <__main__.MyDecriptor object at 0x000000CEAAEB6B00> <__main__.Test object at 0x000000CEABDC0898> <class '__main__.Test'>t.x = 'x-man'
# __set__ <__main__.MyDecriptor object at 0x00000023687C6B00> <__main__.Test object at 0x00000023696B0940> x-mandel t.x
# __delete__ <__main__.MyDecriptor object at 0x000000EC9B160A90> <__main__.Test object at 0x000000EC9B160B38>

定制序列

协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。

容器类型的协议

  • 如果说你希望定制的容器是不可变的话,你只需要定义__len__()__getitem__()方法。
  • 如果你希望定制的容器是可变的话,除了__len__()__getitem__()方法,你还需要定义__setitem__()__delitem__()两个方法。

【例子】编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:def __init__(self, *args):self.values = [x for x in unt = {}.fromkeys(range(len(self.values)), 0)def __len__(self):return len(self.values)def __getitem__(self, item):unt[item] += 1return self.values[item]c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # unt)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}unt)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
  • __len__(self)定义当被len()调用时的行为(返回容器中元素的个数)。
  • __getitem__(self, key)定义获取容器中元素的行为,相当于self[key]
  • __setitem__(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value
  • __delitem__(self, key)定义删除容器中指定元素的行为,相当于del self[key]

【例子】编写一个可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:def __init__(self, *args):self.values = [x for x in unt = {}.fromkeys(range(len(self.values)), 0)def __len__(self):return len(self.values)def __getitem__(self, item):unt[item] += 1return self.values[item]def __setitem__(self, key, value):self.values[key] = valuedef __delitem__(self, key):del self.values[key]for i in range(0, len(self.values)):if i >= unt[i] = unt[i + unt.pop(len(self.values))c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
c2[2] = 12
print(c1[1] + c2[2])  # 15
unt)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
unt)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
unt)
# {0: 0, 1: 0, 2: 0, 3: 0}

迭代器

  • 迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
  • 迭代器只能往前不会后退。
  • 字符串,列表或元组对象都可用于创建迭代器:

【例子】

string = 'lsgogroup'
for c in string:print(c)'''
l
s
g
o
g
r
o
u
p
'''for c in iter(string):print(c)
  • 迭代器有两个基本的方法:iter()next()
  • iter(object) 函数用来生成迭代器。
  • next(iterator[, default]) 返回迭代器的下一个项目。
  • iterator – 可迭代对象
  • default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。

【例子】

links = {'B': '百度', 'A': '阿里', 'T': '腾讯'}it = iter(links)
while True:try:each = next(it)except StopIteration:breakprint(each)# B
# A
# Tit = iter(links)
print(next(it))  # B
print(next(it))  # A
print(next(it))  # T
print(next(it))  # StopIteration

把一个类作为一个迭代器使用需要在类中实现两个魔法方法 __iter__()__next__()

  • __iter__(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
  • __next__() 返回下一个迭代器对象。
  • StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

【例子】

class Fibs:def __init__(self, n=10):self.a = 0self.b = 1self.n = ndef __iter__(self):return selfdef __next__(self):self.a, self.b = self.b, self.a + self.bif self.a > self.n:raise StopIterationreturn self.afibs = Fibs(100)
for each in fibs:print(each, end=' ')# 1 1 2 3 5 8 13 21 34 55 89

生成器

  • 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
  • 调用一个生成器函数,返回的是一个迭代器对象。

【例子】

def myGen():print('生成器执行!')yield 1yield 2myG = myGen()
for each in myG:print(each)'''
生成器执行!
1
2
'''myG = myGen()
print(next(myG))  
# 生成器执行!
# 1print(next(myG))  # 2
print(next(myG))  # StopIteration

【例子】用生成器实现斐波那契数列。

def libs(n):a = 0b = 1while True:a, b = b, a + bif a > n:returnyield afor each in libs(100):print(each, end=' ')# 1 1 2 3 5 8 13 21 34 55 89

本文发布于:2024-01-30 15:51:22,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170660108521121.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:进阶   序列   函数   高级   迭代
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23