MQ(message queue),从字面意思上看,本质是个队列,FIFO 先入先出,只不过队列中存放的内容是message 而已,还是一种跨进程的通信机制,用于上下游传递消息。在互联网架构中,MQ 是一种非常常见的上下游“逻辑解耦+物理解耦”的消息通信服务。使用了 MQ 之后,消息发送上游只需要依赖 MQ,不用依赖其他服务。
举个例子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。使用消息队列做缓冲,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。
以电商应用为例,应用中有订单系统、库存系统、物流系统、支付系统。用户创建订单后,如果耦合调用库存系统、物流系统、支付系统,任何一个子系统出了故障,都会造成下单操作异常。当转变成基于消息队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,中单用户感受不到物流系统的故障,提升系统的可用性。
有些服务间调用是异步的,例如 A 调用 B,B 需要花费很长时间执行,但是 A 需要知道 B 什么时候可以执行完,以前一般有两种方式,A 过一段时间去调用 B 的查询 api 查询。或者 A 提供一个 callback api, B 执行完之后调用 api 通知 A 服务。这两种方式都不是很优雅,使用消息总线,可以很方便解决这个问题,A 调用 B 服务后,只需要监听 B 处理完成的消息,当 B 处理完成后,会发送一条消息给 MQ,MQ 会将此消息转发给 A 服务。这样 A 服务既不用循环调用 B 的查询 api,也不用提供 callback api。同样 B 服务也不用做这些操作。A 服务还能及时的得到异步处理成功的消息。
大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开 Kafka,这款为大数据而生的消息中间件,以其百万级 TPS 的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。目前已经被 LinkedIn,Uber, Twitter, Netflix 等大公司所采纳。
RocketMQ 出自阿里巴巴的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进。被阿里巴巴广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog 分发等场景。
2007 年发布,是一个在 AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。
Kafka 主要特点是基于 Pull 的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,适合产生大量数据的互联网服务的数据收集业务。大型公司建议可以选用,如果有日志采集功能,肯定是首选 kafka 了。
天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。RoketMQ 在稳定性上可能更值得信赖,这些业务场景在阿里双 11 已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择 RocketMQ。
结合 erlang 语言本身的并发优势,性能好时效性微秒级,社区活跃度也比较高,管理界面用起来十分方便,如果你的数据量没有那么大,中小型公司优先选择功能比较完备的 RabbitMQ。
RabbitMQ 是一个消息中间件:它接受并转发消息。你可以把它当做一个快递站点,当你要发送一个包裹时,你把你的包裹放到快递站,快递员最终会把你的快递送到收件人那里,按照这种逻辑 RabbitMQ 是一个快递站,一个快递员帮你传递快件。RabbitMQ 与快递站的主要区别在于,它不处理快件而是接收,存储和转发消息数据。
我是docker安装,百度即可,一大堆
下图中 P 是我们的生产者,C 是我们的消费者,中间的红色框框是一个消息队列
<dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>5.9.0</version>
</dependency>
public class Producer {/*** 队列名称 hello*/private static final String QUEUE_NAME = "hello";/*** 发消息*/public static void main(String[] args) throws Exception {//创建一个连接工厂ConnectionFactory factory = new ConnectionFactory();//ip user passwordfactory.setHost("127.0.0.1");factory.setUsername("guest");factory.setPassword("guest");// channel 实现了自动 close 接口 自动关闭 不需要显示关闭//创建一个工厂Connection connection = wConnection();//获取信道 类似于NIOChannel channel = ateChannel();/*** 生成一个队列* 1.队列名称* 2.队列里面的消息是否持 久化 默认消息存储在内存中* 3.该队列是否只供一个消费者进行消费 是否进行共享 true 可以多个消费者消费* 4.是否自动删除 最后一个消费者端开连接以后 该队列是否自动删除 true 自动删除* 5.其他参数*/channel.queueDeclare(QUEUE_NAME, false, false, false, null);String message = "hello world";/*** 发送一个消息* 1.发送到那个交换机* 2.路由的 key 是哪个* 3.其他的参数信息* 4.发送消息的消息体*/channel.basicPublish("", QUEUE_NAME, null, Bytes());System.out.println("消息发送完毕");}
}
public class Consumer {private final static String QUEUE_NAME = "hello";public static void main(String[] args) throws Exception {ConnectionFactory factory = new ConnectionFactory();factory.setHost("127.0.0.1");factory.setUsername("guest");factory.setPassword("guest");Connection connection = wConnection();Channel channel = ateChannel();System.out.println("等待接收消息....");//推送的消息如何进行消费的接口回调DeliverCallback deliverCallback = (consumerTag, delivery) -> {String message = new Body());System.out.println(message);};//取消消费的一个回调接口 如在消费的时候队列被删除掉了CancelCallback cancelCallback = consumerTag -> System.out.println("消息消费被中断");/*** 消费者消费消息* 1.消费哪个队列* 2.消费成功之后是否要自动应答 true 代表自动应答 false 手动应答* 3.消费者未成功消费的回调* 4.消费者取消消费的回调*/channel.basicConsume(QUEUE_NAME, true, deliverCallback, cancelCallback);}
}
本文发布于:2024-01-30 16:49:40,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170660458321448.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |