题目链接
Problem Description Matt loves letter L.
Input The first line contains only one integer T , which indicates the number of test cases.
Output For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y is the number of pairs.
Sample Input 2 6 1 1 1 2 2 1 3 3 3 4 4 3 9 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3
Sample Output Case #1: 2 Case #2: 6 Hint n the second sample, the ordered pairs of sets Matt can choose are: A = {(1, 1), (1, 2), (1, 3), (2, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (1, 3), (2, 1)} A = {(1, 1), (1, 2), (2, 1), (3, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (2, 1), (3, 1)} A = {(1, 1), (1, 2), (2, 1)} and B = {(2, 2), (2, 3), (3, 2)} A = {(2, 2), (2, 3), (3, 2)} and B = {(1, 1), (1, 2), (2, 1)} Hence, the answer is 6. 题意:对于点集P 如果存在a,b使得P = {(x, y), (x + 1, y), . . . , (x + a, y), (x, y + 1), . . . , (x, y + b)}(a, b ≥ 1),并且a,b互质,则P is good 。可以发现对于符合要求(good)的集合P ,其构成一个L 型,且以(x,y)为拐点,从(x,y)向上长度和向右长度 互质。现在给了N个点,求有多少对符合要求的L型集合不相交(集合交集为空)? 思路:先找到所有符合要求的L个数S,那么用S*S-相交的L对数 即为结果。 怎么算相交的所有L对数呢? 容斥,很妙的思想,遍历每一个点,如果当前的点是输入的点之一,那么是一个拐点,令这个拐点向右延伸最长为k,那么算出所有其它L的竖着部分与(x,y+k)相交的对数,乘以2,另外要考虑以(x,y)为拐点的L与自身相交的情况,把这两种相交情形减掉后既是结果。 代码如下:
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> using namespace std; typedef long long LL; const int N=40050; const int M=205; int R[M][M],U[M][M]; bool mp[M][M]; int dp[M][M],cnt[M][M]; int t[M][M];int gcd(int a,int b) { return (b==0)?a:gcd(b,a%b); }void init() {for(int i=1;i<M;i++)for(int j=1;j<M;j++){dp[i][j]=dp[i][j-1]+((gcd(i,j)==1)?1:0);cnt[i][j]=cnt[i-1][j]+dp[i][j];} } int main() {init();int T,Case=1;cin>>T;while(T--){int n; scanf("%d",&n);memset(mp,0,sizeof(mp));memset(U,0,sizeof(U));memset(R,0,sizeof(R));memset(t,0,sizeof(t));for(int i=1;i<=n;i++){int x,y;scanf("%d%d",&x,&y);mp[x][y]=1;}for(int i=200;i>=1;i--){for(int j=200;j>=1;j--){if(mp[i][j]){if(mp[i+1][j]) U[i][j]=U[i+1][j]+1;if(mp[i][j+1]) R[i][j]=R[i][j+1]+1;}}}LL s=0;for(int i=1;i<=200;i++){for(int j=1;j<=200;j++){if(mp[i][j]){s+=cnt[U[i][j]][R[i][j]];int d=0;for(int k=U[i][j];k>=0;k--){d+=dp[k][R[i][j]];t[i+k][j]+=d;}}}}LL ans=0;for(int i=1;i<=200;i++){for(int j=1;j<=200;j++){if(mp[i][j]){LL p=t[i][j];LL pp=cnt[U[i][j]][R[i][j]];p-=pp;for(int k=1;k<=R[i][j];k++){p+=t[i][j+k];ans+=2*p*dp[k][U[i][j]];}ans+=pp*pp;}}}s=s*s-ans;printf("Case #%d: %lldn",Case++,s);}return 0; }
转载于:.html
本文发布于:2024-01-30 20:43:30,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170661861422705.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |