ML之回归预测之Lasso:利用Lasso算法对对红酒品质wine数据集解决回归(实数值评分预测)问题—优化模型【增加新(组合)属性】

阅读: 评论:0

ML之回归预测之Lasso:利用Lasso算法对对红酒品质wine数据集解决回归(实数值评分预测)问题—优化模型【增加新(组合)属性】

ML之回归预测之Lasso:利用Lasso算法对对红酒品质wine数据集解决回归(实数值评分预测)问题—优化模型【增加新(组合)属性】

ML之回归预测之Lasso:利用Lasso算法对对红酒品质wine数据集解决回归(实数值评分预测)问题—优化模型【增加新(组合)属性】

目录

输出结果

设计思路

核心代码


输出结果

设计思路

核心代码

names[-1] = "a^2"
names.append("a*b")nrows = len(xList)
ncols = len(xList[0])xMeans = []
xSD = []
for i in range(ncols):col = [xList[j][i] for j in range(nrows)]mean = sum(col)/nrowsxMeans.append(mean)colDiff = [(xList[j][i] - mean) for j in range(nrows)]sumSq = sum([colDiff[i] * colDiff[i] for i in range(nrows)])stdDev = sqrt(sumSq/nrows)xSD.append(stdDev)X = numpy.array(xList)             #Unnormalized X's
X = numpy.array(xNormalized)       #Normlized Xss
Y = numpy.array(labels)            #Unnormalized labels

本文发布于:2024-01-30 23:39:28,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170662917123667.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:实数   组合   红酒   算法   对对
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23