Architectural fitness function,架构你好我也好

阅读: 评论:0

Architectural fitness function,架构你好我也好

Architectural fitness function,架构你好我也好

写在前面

ThoughtWorks每年都会出品两期技术雷达,这是一份关于科技行业的技术趋势报告,在四个象限:技术、平台、工具以及语言和框架对每一个条目(Blip)做采用、试验、评估、暂缓的建议。(参考阅读:解读技术雷达的正确姿势)

一直以来,我们都未对每一个Blip做进一步的解读,而这次决定尝试一个新的专栏——《雷达哔哔哔》,由作者根据自己实践与理解,对雷达中部分条目作出解析,致力于用一篇篇短小精悍的文字,帮助读者加深对雷达的理解。

今天是《雷达哔哔哔》的第二篇,依然关注架构,Blip是Architectural fitness function。

位置

2018年5月第18期技术雷达,技术象限,建议试验

目标受众:

系统架构师,技术管理者,开发人员

关注问题:

技术架构腐化带来系统响应度降低,可维护性下降,技术债缠身。而盲目优化或是单纯的技术驱动的架构优化又常常偏离初衷,容易造成过度优化,不但没有解决之前的问题,还会引入新的问题。那如何度量技术架构的好与坏?如何拿捏技术架构演进的度?如何用目标驱动的方式做技术架构的持续演进?如何衡量技术架构演进的成果?如何进行架构守护?

解决方案:

通过识别架构演进度量指标,编写Architectural fitness function(适应度函数),以此量化及可视化系统架构演进效果,并通过持续反馈不断调整技术架构演进方向,避免架构演进脱离初始目标。

解读:

Architectural fitness function(适应度函数)借鉴自进化计算,被用来衡量方案对满足目标的适合度。

当定义演进式算法时,算法设计者会寻求更优解,而适应度函数则定义了在此上下文中“更优”的含义。

将适应度函数应用于软件架构,则为系统的架构演进提供了一个度量的目标,开启了“【目标(测试)驱动架构演进】”的新时代。
记住,如果你无法为系统演进、架构升级优化定义出度量的Metrics,并通过Fitness Function写一个测试来驱动和可视化你的架构演进成果。那就表明你还没有想清楚架构演进要解决的问题,就先不要开始!

《演进式架构》一书定义了架构适应度函数的概念,为衡量架构特征提供了一个客观全面的方法,包括已有的验证标准,比如单元测试、业务指标、监控等等。

感兴趣的可以了解一下。

工具:

ArchUnit:一个可以测试Java系统架构本身的测试工具,例如所有的Service只能被Controller或是Service调用的测试如下:

延展阅读

  • 演进式架构设计 - 图书 - 图灵社区
  • 架构腐化之谜 - InfoQ
  • 聊聊演进式架构 - 掘金
  • 微服务即演进式架构 - ThoughtWorks洞见
  • 微服务和演进式架构 - ThoughtWorks洞见


文/ThoughtWorks王健
更多精彩洞见,请关注微信公共号:思特沃克

本文发布于:2024-01-31 02:25:16,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170663911724668.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23