2019“智见AI” Spring Camp 知识点简要汇总

阅读: 评论:0

2019“智见AI” Spring Camp 知识点简要汇总

2019“智见AI” Spring Camp 知识点简要汇总

卷积网络模型设计方向

  1. 代季峰《卷积神经网络中的几何形变建模》

    • 由于构造卷积神经网络 (CNN) 所用的模块中几何结构是固定的,其几何变换建模的能力本质上是有限的。之前的网络保持空间不变性都是通过仿射变换等形式,但仿射变换仍然具有局限性和固定性,不能很好的泛化到各种形变中

    • Spatial Transformaer Network(STN)网络通过引入localisation net网络来学习相应的仿射变换参数,然后通过Grid generator找到V对应的U的坐标,然后再通过坐标和参数对V进行填充,这样就可以有效的适应到各种形变。

    • 但STN的缺点在于仍然局限在仿射变换中,因此提出了Deformable Convolution Network(DCN)对CNN的常规卷积模块进行二位偏移,从网络结构入手,不需要额外的监督信号,且能很容易进行标准反向传播端到端的训练,从而增加网络的几何变换建模能力。[可变形卷积 (deformable convolution) 和可变形兴趣区域池化 (deformable ROI pooling)]

    • DCNv2用了更好的visualization来更深入的理解DCNv1为什么work以及还存在什么缺陷

      得出的结论是:

      1. 传统的Conv还是能一定程度上建模几何变换的
      2. 加入DCN后对几何变换的建模能力得到了提升,前景对应的特征点能更多的覆盖整个物体,背景对应的特征点能更多的包含context。
      3. 但是spatial support是不精确的,前景的effective receptive field和error-bounded saliency region还是会有一些无关的背景混入

      解决方法:

      1. 增加更多的Deformable Convolution
      2. 让Deformable Conv不仅能学习offset,还能学习每个采样点的权重(modulation)
      3. R-CNN Feature Mimicking(knowledge distillation)
        因为R-CNN学到的focus在物体上的feature可以解决redundant context的问题。

  2. 张祥雨《高效轻量级深度模型的研究与实践》
    高效轻量级模型部分主要讲了三部分:轻量级架构、模型搜索和模型裁剪,主要听了轻量级架构部分。

    1. shuffleNet
      但分组后Group之间相互无交流,影响了网络的准确率,因此,提出了channel shuffle来加强group之间的联系
    2. 针对shuffleNet的问题,提出了shuffleNet v2.
      依据指导准则去修改网络架构,达到轻量级高性能。
  3. 黄高《面向快速推理的卷积神经网络结构设计》
    参考博客:

    1. DenseNet:优点 Dense and Slim
      ResNet的优点在于使不同尺度的感受野混合,从而构建多尺度的感受野。DenseNet则更加充分的混合了不同尺度的感受野,使网络结构的含义更加丰富和多元化。

    2. 组卷积

    3. Dilated Convolution

    4. Multi-Scale features

      • 样本分析时,发现样本具有差异性,无论对人眼还是网络,都可分为easy和hard识别。
      • 那既然样本具有差异性,我们就可以用不同的网络结构去适应这种差异性,减少网络的运算量。
      • 训练时,会把所有图像放入所有网络中进行训练。测试时,如果浅层网络分类就具有较高的置信度,则不再放入深层网络进行分类,减少简单图片的计算量。
    5. 问题总结:
      Design:怎样去设计一个高效且合适的网络结构?
      Training:怎样去高效的去训练一个动态网络?
      Evaluation:怎样去高效地进行动态评估?
      For other task:怎样将这个应用于其他的任务上?
      Spatial or Temporal:到底是时域还是空域自适应?

本文发布于:2024-01-31 07:19:48,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170665679126604.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:知识点   简要   智见   AI   Camp
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23