logistic 回归用于分类, 特别是二分类 (仅有两个类别).
图 1. 分割超平面
相乘计算困难, 将其求一个对数, 不改变单调性
log L ( w ) = ∑ i = 1 n log P ( y i ∣ x i ; w ) = ∑ i = 1 n y i log P ( y i = 1 ∣ x i ; w ) + ( 1 − y i ) log ( 1 − P ( y i = 1 ∣ x i ; w ) ) = ∑ i = 1 n y i log P ( y i = 1 ∣ x i ; w ) 1 − P ( y i = 1 ∣ x i ; w ) + log ( 1 − P ( y i = 1 ∣ x i ; w ) ) = ∑ i = 1 n y i x i w − log ( 1 + e x i w ) (4) begin{aligned}log L(mathbf{w}) & = sum_{i = 1}^n log P(y_i vert mathbf{x}_i; mathbf{w}) \ & = sum_{i = 1}^n y_i log P(y_i = 1 vert mathbf{x}_i; mathbf{w}) + (1 - y_i) log(1 - P(y_i = 1 vert mathbf{x}_i; mathbf{w})) \ & = sum_{i = 1}^n y_i log frac{P(y_i = 1 vert mathbf{x}_i; mathbf{w})}{1 - P(y_i = 1 vert mathbf{x}_i; mathbf{w})} + log (1 - P(y_i = 1 vert mathbf{x}_i; mathbf{w}))\ & = sum_{i = 1}^n y_i mathbf{x}_i mathbf{w} - log (1 + e^{mathbf{x}_i mathbf{w}}) end{aligned}tag{4} logL(w)=i=1∑nlogP(yi∣xi;w)=i=1∑nyilogP(yi=1∣xi;w)+(1−yi)log(1−P(yi=1∣xi;w))=i=1∑nyilog1−P(yi=1∣xi;w)P(yi=1∣xi;w)+log(1−P(yi=1∣xi;w))=i=1∑nyixiw−log(1+exiw)(4)
源码: begin{aligned}log L(mathbf{w}) & = sum_{i = 1}^n log P(y_i vert mathbf{x}i; mathbf{w})
& = sum{i = 1}^n y_i log P(y_i = 1 vert mathbf{x}_i; mathbf{w}) + (1 - y_i) log(1 - P(y_i = 1 vert mathbf{x}i; mathbf{w}))
& = sum{i = 1}^n y_i log frac{P(y_i = 1 vert mathbf{x}_i; mathbf{w})}{1 - P(y_i = 1 vert mathbf{x}_i; mathbf{w})} + log (1 - P(y_i = 1 vert mathbf{x}i; mathbf{w}))
& = sum{i = 1}^n y_i mathbf{x}_i mathbf{w} - log (1 + e^{mathbf{x}_i mathbf{w}}) end{aligned}tag{4}
对 w mathbf{w} w 求偏导
∂ log L ( w ) ∂ w = ∑ i = 1 n y i x i − e x i w 1 + e x i w x i = ∑ i = 1 n ( y i − e x i w 1 + e x i w ) x i (5) begin{aligned} frac{partial log L(mathbf{w})}{partial mathbf{w}} & = sum_{i = 1}^n y_i mathbf{x}_i - frac{e^{mathbf{x}_i mathbf{w}}}{1 + e^{mathbf{x}_i mathbf{w}}} mathbf{x}_i\ & = sum_{i = 1}^n left(y_i - frac{e^{mathbf{x}_i mathbf{w}}}{1 + e^{mathbf{x}_i mathbf{w}}}right) mathbf{x}_iend{aligned} tag{5} ∂w∂logL(w)=i=1∑nyixi−1+exiwexiwxi=i=1∑n(yi−1+exiwexiw)xi(5)
源码: begin{aligned} frac{partial log L(mathbf{w})}{partial mathbf{w}} & = sum_{i = 1}^n y_i mathbf{x}_i - frac{e^{mathbf{x}_i mathbf{w}}}{1 + e^{mathbf{x}_i mathbf{w}}} mathbf{x}i
& = sum{i = 1}^n left(y_i - frac{e^{mathbf{x}_i mathbf{w}}}{1 + e^{mathbf{x}_i mathbf{w}}}right) mathbf{x}_iend{aligned} tag{5}
令该偏导为 0, 无法获得解析式, 因此用梯度下降.
w t + 1 = w t − α ∂ log L ( w ) ∂ w (6) mathbf{w}^{t + 1} = mathbf{w}^t - alpha frac{partial log L(mathbf{w})}{partial mathbf{w}} tag{6} wt+1=wt−α∂w∂logL(w)(6)
自己推导一遍, 并描述这个方法的特点 (不少于 5 条).
本文发布于:2024-01-31 07:43:58,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170665824326801.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |