微电网优化模型介绍:
微电网多目标优化调度模型简介_IT猿手的博客-CSDN博客
进化场优化算法(Evolutionary Field Optimization,EFO)由Baris Baykant Alagoz等人于2022年提出,该算法采用场适应差分交叉机制,具有搜索速度快等优势。
参考文献:
[1]Alagoz BB, Simsek OI, Ari D, Tepljakov A, Petlenkov E, Alimohammadi H. An Evolutionary Field Theorem: Evolutionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose Applications. Sensors. 2022; 22(10):3836. Sensors | Free Full-Text | An Evolutionary Field Theorem: Evolutionary Field Optimization in Training of Power-Weighted Multiplicative Neurons for Nitrogen Oxides-Sensitive Electronic Nose Applications
(1)部分代码
close all; clear ; clc; global P_load; %电负荷 global WT;%风电 global PV;%光伏 %% TestProblem=1; [lb,ub,dim,fobj] = GetFunInfo(TestProblem); SearchAgents_no=50; % Number of search agents Max_iteration=800; % Maximum number of iterations [Best_score,Xbest,Convergence_curve]=EFO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);%% 画结果图 figure(1) semilogy(Convergence_curve,'k-','linewidth',2); legend('EFO'); xlabel('迭代次数') ylabel('运行成本与环境保护成本之和')
(2)部分结果
本文发布于:2024-01-31 09:05:50,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170666315127419.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |