General Seniority 学习笔记(1): BCS
我学习了参考文献 [1,2],把里面的核心公式推导核对整理了,因为觉得有点意思。做完笔记我顺手写了个代码,还没来得及核对。
下一步可以考虑投影 broken-pair 的优化和投影,即 seniority 取次极小的内秉态做投影。
参考文献:
[1] 贾力源,"Application of the variational principle to a coherent-pair condensate: The BCS case", PRC99, 014302 (2019).
[2] 俞一信 et al., "Nucleon pair truncation of the shell model for medium-heavy nuclei", to be submitted.
所有轨道和自己的时间反演轨道,进行两两配对 ((alpha, bar{alpha})),然后定义时间反演轨道上的配对:
[hat{P}^dagger_alpha = hat{c}^dagger_alpha hat{c}^dagger_bar{alpha}. ]
配对定义为
[hat{P}^dagger = sum_{alpha in Theta} nu_alpha hat{P}^dagger_alpha, ]
其中 (Theta) 表示非集体对序号集合,序号个数是单粒子轨道数的一半。单粒子轨道可以是形变基,也可以是球形基,只要两两配对即可。General Seniority 的全部变化,就是这样的配对的凝聚、对破缺。
一般假定基态对应着配对凝聚,
[|phi_N rangle = frac{1}{ sqrt{chi_N} } (hat{P}^dagger)^N | 0 rangle, ]
其中 (chi_N) 是归一化因子,
[chi_N = langle 0 | hat{P}^N (hat{P}^dagger)^N | 0 rangle. ]
Block 掉非集体对 (alpha) 以后,态矢变为
[|phi^{[alpha]}_N rangle = frac{1}{sqrt{chi^{[alpha]}_N}}( hat{P}^dagger - nu_alpha hat{P}^dagger_alpha)^N | 0 rangle, ]
其中,归一化因子
[chi^{[alpha]}_N = langle 0 |hat{P}^N hat{P}_alpha hat{P}^dagger_alpha(hat{P}^dagger)^N | 0 rangle, ]
中间加上 (hat{P}_alpha hat{P}^dagger_alpha) 起的作用就是 block 掉非集体对 (alpha)。
如果已经 block 掉 (gamma_1, gamma_2, cdots, gamma_r),则有
[chi^{[gamma_1 cdots gamma_r]}_N = N sum_alpha nu^2_alpha chi^{[alphagamma_1 cdots gamma_r]}_{N-1}, \ chi^{[gamma_1 cdots gamma_r]}_N - chi^{[alphagamma_1 cdots gamma_r]}_{N} = N^2 nu^2_alpha chi^{[alphagamma_1 cdots gamma_r]}_{N-1}. ]
另外,因为 (chi^{[alphagamma_1 cdots gamma_r]}_{0} = 0),所以可以构造迭代:
[left{chi^{[alphagamma_1 cdots gamma_r]}_{0} right} rightarrow chi^{[gamma_1 cdots gamma_r]}_{1} rightarrow left{chi^{[alphagamma_1 cdots gamma_r]}_{1} right} rightarrow cdots rightarrowleft{chi^{[alphagamma_1 cdots gamma_r]}_{N-1} right} rightarrow chi^{[gamma_1 cdots gamma_r]}_{N} rightarrow left{chi^{[alphagamma_1 cdots gamma_r]}_{N} right}. ]
也就是说,给定 (gamma_1, cdots, gamma_r),任意粒子 (N) 的归一化因子都可以如此迭代计算。因为迭代式非常简单,所以预计是秒出。可以定义矢量
[vec{chi}^{[gamma_1, cdots, gamma_r]}_N equiv left( chi^{[gamma_1 cdots gamma_r]}_{N},left{chi^{[alphagamma_1 cdots gamma_r]}_{N} right} right) ]
那么上面的迭代即
[vec{chi}^{[gamma_1, cdots, gamma_r]}_0 = (1,1,cdots, 1), \ vec{chi}^{[gamma_1, cdots, gamma_r]}_{N-1} rightarrow vec{chi}^{[gamma_1, cdots, gamma_r]}_N. ]
test case: (nu_i = 1, i in Theta)
此时 (chi_N) 很容易解析地得到:
[chi_N = C^N_Omega (N!)^2 = frac{Omega!N!}{(Omega-N)!}. ]
通过 many-pair density matrix,可以计算由对算符构造的任意算符矩阵元。
体系哈密顿量为
[hat{H} = sum_{alpha beta} epsilon_{alpha beta} hat{c}^dagger_alpha hat{c}_beta + frac{1}{4} sum_{alphabetagammadelta} V_{alphabetagammadelta} hat{c}^dagger_alpha hat{c}^dagger_beta hat{c}_gamma hat{c}_delta, ]
其中 (V_{alpha betagammadelta} = - langle alpha beta | hat{V} | gamma delta rangle),有对称性 (epsilon_{alphabeta} = epsilon_{beta alpha}, V_{alphabetagammadelta} = - V_{betaalphagammadelta} = V_{gammadeltaalphabeta})。贾师兄在这里假定了 (epsilon_{alphabeta} = epsilon_{bar{beta}bar{alpha}}, V_{alphabetagammadelta} = V(bar{delta}bar{gamma}bar{beta}bar{alpha})),据说这是假定 time-even 哈密顿量。他还假定 (epsilon_{alphabeta}) 和 (V_{alphabetagammadelta}) 是实数。
若给定 (gamma_1, cdots, gamma_r),要求 block 掉 ({ hat{P}^dagger_{gamma_i}}) ,然后在这个截断空间里计算 ((hat{P}^dagger)^{M-p} hat{P}^dagger_{alpha_1} cdots hat{P}^dagger_{alpha_p} |0rangle) 与 ((hat{P}^dagger)^{M-q} hat{P}^dagger_{beta_1} cdots hat{P}^dagger_{beta_q} |0rangle) 的 overlap,
[t^{[gamma_1 gamma_2 cdots gamma_r], M}_{alpha_1, cdots, alpha_p; beta_1, cdots, beta_q} equiv langle 0 | hat{P}^{M-p} hat{P}_{gamma_1} cdots hat{P}_{gamma_r} hat{P}_{alpha_1}cdots hat{P}_{alpha_p} hat{P}^dagger_{beta_1} cdots hat{P}^dagger_{beta_q} (hat{P}^dagger)^{M-q} |0rangle, ]
这里我们约定 ({alpha_i}, {beta_j})没有共同元素,否则可以移到 ({gamma_i})里面去。这样的话,这么写也可以
[t^{[gamma_1 gamma_2 cdots gamma_r], M}_{alpha_1, cdots, alpha_p; beta_1, cdots, beta_q} = langle 0 | hat{P}^{M-p} hat{P}_{gamma_1} cdots hat{P}_{gamma_r} hat{P}^dagger_{beta_1} cdots hat{P}^dagger_{beta_q} hat{P}_{alpha_1}cdots hat{P}_{alpha_p} (hat{P}^dagger)^{M-q} | 0 rangle, ]
所以可以叫做 many-pair density matrix。容易看出,它可以表示成 (chi) 的表达式:
[t^{[gamma_1, cdots, gamma_r],M}_{alpha_1, cdots, alpha_p; beta_1, cdots, beta_q} = nu_{alpha_1} cdots nu_{alpha_p} nu_{beta_1} cdots nu_{beta_q} frac{(M-p)!(M-q)!}{(M-p-q)!(M-p-q)!} chi^{[alpha_1 cdots alpha_p beta_1 cdots beta_q gamma_1 cdots gamma_r]}_{M-p-q}. ]
这个比较简单,
[langle 0 | hat{P}^N hat{c}^dagger_alpha hat{c}_beta (hat{P}^dagger)^N | 0 rangle = delta_{alphabeta} chi_N langle phi_N | hat{n}_alpha | phi_N rangle = (Nnu_alpha)^2 chi^{[alpha]}_{N-1}. ]
只有以下 3 种情况,两体矩阵元不为零:
[langle 0 | hat{P}^N hat{c}^dagger_alpha hat{c}^dagger_bar{alpha} hat{c}_bar{alpha} hat{c}_alpha (hat{P}^dagger)^N |0rangle = (Nnu_alpha)^2 chi^{[alpha]}_{N-1}, \ langle 0 | hat{P}^N hat{c}^dagger_alpha hat{c}^dagger_bar{alpha} hat{c}_bar{beta} hat{c}_beta (hat{P}^dagger)^N | 0 rangle = N^2 nu_alpha nu_beta chi^{[alphabeta]}_{N-1}, \ langle 0 | hat{P}^N hat{c}^dagger_alpha hat{c}^dagger_beta hat{c}_beta hat{c}_alpha (hat{P}^dagger)^N | 0 rangle = N^2(N-1)^2 nu^2_alpha nu^2_beta chi^{[alphabeta]}_{N-2}. ]
哈密顿量定义为
[hat{H} = sum_{alphabeta} epsilon_{alphabeta} hat{c}^dagger_alpha hat{c}_beta + frac{1}{4} sum_{alphabetagammadelta} V_{alphabetagammadelta} hat{c}^dagger_alpha hat{c}^dagger_beta hat{c}_delta hat{c}_gamma. ]
[langle phi_N | hat{H} | phi_N rangle = sum_{alpha in Theta} 2 epsilon_{alpha alpha} langle phi_N | hat{c}^dagger_alpha hat{c}_alpha | phi_N rangle + sum_{alpha in Theta } V_{alpha bar{alpha} alpha bar{alpha} } langle phi_N | hat{c}^dagger_alpha hat{c}^dagger_bar{alpha} hat{c}_bar{alpha} hat{c}_alpha | phi_N rangle \ + sum^{alpha neq beta}_{alpha, beta in Theta} V_{alpha bar{alpha} beta bar{beta} } langle phi_N | hat{c}^dagger_alpha hat{c}^dagger_bar{alpha} hat{c}_bar{beta} hat{c}_beta | phi_N rangle + sum^{alpha neq beta}_{alpha, beta in Theta} (2V_{alpha beta alpha beta } + 2V_{alpha bar{beta} alpha bar{beta} } ) langle phi_N |hat{c}^dagger_alpha hat{c}^dagger_beta hat{c}_beta hat{c}_alpha | phi_N rangle. ]
将上一小节的结果代入上式,若记 (G_{alphabeta} = V_{alphabar{alpha}betabar{beta}}, Lambda_{alphabeta} = V_{alphabetaalphabeta} + V_{alpha bar{beta} alpha bar{beta} }),得到
[bar{E} equiv langle phi_N | hat{H} | phi_N rangle = frac{N^2}{chi_N} left( sum_{alpha in Theta} (2epsilon_{alphaalpha} + G_{alphaalpha}) nu^2_alpha chi^{[alpha]}_{N-1} + sum^{alpha < beta}_{alpha, beta in Theta} 2G_{alpha beta} nu_alpha nu_beta chi^{[alphabeta]}_{N-1} + (N-1)^2 sum^{alpha < beta}_{alpha, beta in Theta} 2 Lambda_{alphabeta} nu^2_alpha nu^2_beta chi^{[alphabeta]}_{N-2} right). ]
这个与贾力源的公式一致,只是我的后两个求和符号上有 (alpha < beta),导致相应的有个 2 倍。最后一项有点 tricky,本就只需考虑 (sum^{alpha<beta}_{alpha,beta in Theta}) 的情况,(V_{alphabetabetaalpha}, V_{alpha bar{beta} alpha bar{beta} }, V_{bar{alpha} bar{beta} bar{alpha} bar{beta} }, V_{bar{alpha} beta bar{alpha} beta }),这四项+时间反演对称,得到 (2Lambda_{alphabeta})。
感觉可以设置 (nu_i = 1),来做简单测试。
先算 overlap:
[delta chi_N = 2N langle 0 | hat{P}^N hat{P}^dagger_alpha (hat{P}^dagger)^{N-1} |0rangle delta nu_alpha = 2 N^2 nu_{alpha}chi^{[alpha]}_{N-1} delta nu_alpha = frac{ 2chi_N}{ nu_alpha} langle phi_N | hat{n}_alpha |phi_Nrangledelta nu_alpha. ]
这可以推广: $ alpha notin { gamma_1, cdots , gamma_r }$ 时,
[delta chi^{[gamma_1 cdots gamma_r]}_N = 2 N^2 nu_{alpha}chi^{[alpha gamma_1 cdots gamma_r]}_{N-1} delta nu_alpha. ]
Anyway, (chi_N) 的偏导数有了
[frac{ partial }{partial nu_alpha} chi_N = 2 N^2 nu_{alpha}chi^{[alpha]}_{N-1}. ]
考虑哈密顿量矩阵元的偏导数,
[delta langle hat{P}^N | hat{H} |(hat{P}^dagger)^N rangle = 2N langle hat{P}^{N-1} hat{P}_alpha | hat{H} | (hat{P}^dagger)^N rangle delta nu_alpha, ]
下面计算 (langle hat{P}^{N-1} hat{P}_alpha | hat{H} |(hat{P}^dagger)^N rangle) ,可以如下从容计算。
[N nu_alpha langle (hat{P} - nu_alpha hat{P}_alpha)^{N-1} | hat{H} | (hat{P}^dagger - nu_alpha hat{P}^dagger_alpha)^{N-1} rangle = N nu_alpha langle phi^{[alpha]}_{N-1} | hat{H} | phi^{[alpha]}_{N-1} rangle chi^{[alpha]}_{N-1}. ]
再分别考虑 (hat{H}) 中包含 (alpha) 的各项贡献。
源于 (hat{c}^dagger_alpha hat{c}_alpha, hat{c}^dagger_bar{alpha} hat{c}_bar{alpha}, hat{P}^dagger_alpha hat{P}_alpha)形式的相互作用,与(2epsilon_{alpha alpha} + G_{alpha alpha}) 相关的贡献(对单粒子能)为
[(2epsilon_{alpha alpha} + G_{alphaalpha}) N nu_alpha chi^{[alpha]}_{N-1}; ]General Seniority 学习笔记(1): BCS
我学习了参考文献 [1,2],把里面的核心公式推导核对整理了,因为觉得有点意思。做完笔记我顺手写了个代码,还没来得及核对。
下一步可以考虑投影 broken-pair 的优化和投影,即 seniority 取次极小的内秉态做投影。
参考文献:
[1] 贾力源,"Application of the variational principle to a coherent-pair condensate: The BCS case", PRC99, 014302 (2019).
[2] 俞一信 et al., "Nucleon pair truncation of the shell model for medium-heavy nuclei", to be submitted.
所有轨道和自己的时间反演轨道,进行两两配对 ((alpha, bar{alpha})),然后定义时间反演轨道上的配对:
[hat{P}^dagger_alpha = hat{c}^dagger_alpha hat{c}^dagger_bar{alpha}. ]配对定义为
[hat{P}^dagger = sum_{alpha in Theta} nu_alpha hat{P}^dagger_alpha, ]其中 (Theta) 表示非集体对序号集合,序号个数是单粒子轨道数的一半。单粒子轨道可以是形变基,也可以是球形基,只要两两配对即可。General Seniority 的全部变化,就是这样的配对的凝聚、对破缺。
一般假定基态对应着配对凝聚,
[|phi_N rangle = frac{1}{ sqrt{chi_N} } (hat{P}^dagger)^N | 0 rangle, ]其中 (chi_N) 是归一化因子,
[chi_N = langle 0 | hat{P}^N (hat{P}^dagger)^N | 0 rangle. ]Block 掉非集体对 (alpha) 以后,态矢变为
[|phi^{[alpha]}_N rangle = frac{1}{sqrt{chi^{[alpha]}_N}}( hat{P}^dagger - nu_alpha hat{P}^dagger_alpha)^N | 0 rangle, ]其中,归一化因子
[chi^{[alpha]}_N = langle 0 |hat{P}^N hat{P}_alpha hat{P}^dagger_alpha(hat{P}^dagger)^N | 0 rangle, ]中间加上 (hat{P}_alpha hat{P}^dagger_alpha) 起的作用就是 block 掉非集体对 (alpha)。
如果已经 block 掉 (gamma_1, gamma_2, cdots, gamma_r),则有
[chi^{[gamma_1 cdots gamma_r]}_N = N sum_alpha nu^2_alpha chi^{[alphagamma_1 cdots gamma_r]}_{N-1}, \ chi^{[gamma_1 cdots gamma_r]}_N - chi^{[alphagamma_1 cdots gamma_r]}_{N} = N^2 nu^2_alpha chi^{[alphagamma_1 cdots gamma_r]}_{N-1}. ]另外,因为 (chi^{[alphagamma_1 cdots gamma_r]}_{0} = 0),所以可以构造迭代:
[left{chi^{[alphagamma_1 cdots gamma_r]}_{0} right} rightarrow chi^{[gamma_1 cdots gamma_r]}_{1} rightarrow left{chi^{[alphagamma_1 cdots gamma_r]}_{1} right} rightarrow cdots rightarrowleft{chi^{[alphagamma_1 cdots gamma_r]}_{N-1} right} rightarrow chi^{[gamma_1 cdots gamma_r]}_{N} rightarrow left{chi^{[alphagamma_1 cdots gamma_r]}_{N} right}. ]也就是说,给定 (gamma_1, cdots, gamma_r),任意粒子 (N) 的归一化因子都可以如此迭代计算。因为迭代式非常简单,所以预计是秒出。可以定义矢量
[vec{chi}^{[gamma_1, cdots, gamma_r]}_N equiv left( chi^{[gamma_1 cdots gamma_r]}_{N},left{chi^{[alphagamma_1 cdots gamma_r]}_{N} right} right) ]那么上面的迭代即
[vec{chi}^{[gamma_1, cdots, gamma_r]}_0 = (1,1,cdots, 1), \ vec{chi}^{[gamma_1, cdots, gamma_r]}_{N-1} rightarrow vec{chi}^{[gamma_1, cdots, gamma_r]}_N. ]test case: (nu_i = 1, i in Theta)
此时 (chi_N) 很容易解析地得到:
[chi_N = C^N_Omega (N!)^2 = frac{Omega!N!}{(Omega-N)!}. ]通过 many-pair density matrix,可以计算由对算符构造的任意算符矩阵元。
体系哈密顿量为
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E5%8D%8E%E7%BA%B3%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E6%96%B0%E7%99%BE%E8%83%9C%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%A8%B1%E4%B9%90%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8app%E4%B8%8B%E8%BD%BD-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BB%8F%E7%90%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BB%8F%E7%90%86%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%81%94%E7%B3%BB%E6%96%B9%E5%BC%8F-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B3%A8%E5%86%8C%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%B4%9F%E8%B4%A3%E4%BA%BA%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%89%8B%E6%9C%BAapp%E4%B8%8B%E8%BD%BD%E9%93%BE%E6%8E%A5-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E7%AB%99-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E4%B8%8A%E4%B8%8B%E5%88%86-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D%E5%BE%AE%E4%BF%A1-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E5%AE%A2%E6%9C%8D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E4%B8%8A%E4%B8%8B%E5%88%86%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E9%A1%B5%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%85%AC%E5%8F%B8%E7%99%BB%E9%99%86%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B3%A8%E5%86%8C%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%B8%B8%E6%88%8F%E5%AE%98%E7%BD%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E5%9D%80%E5%A4%9A%E5%B0%91-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E8%81%94%E7%B3%BB%E7%94%B5%E8%AF%9D-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%94%B5%E8%84%91%E7%BD%91%E5%9D%80-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E6%89%8B%E6%9C%BA%E7%89%88-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-19869481847-hpp
/?c=search&keyword=%E8%85%BE%E9%BE%99%E5%9B%BD%E9%99%85%E7%BD%91%E6%8A%95%E8%B4%A6%E5%8F%B7%E5%BC%80%E6%88%B7-198
本文发布于:2024-01-31 22:10:56,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170671025531714.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |