Visual Tracker Benchmark

阅读: 评论:0

Visual Tracker Benchmark

Visual Tracker Benchmark

Visual Tracker Benchmark

Y. Wu, J. Lim, and M. Yang测试了29个公开的visual tracker,按年代顺序排列如下:

感谢各位作者都提供了各种方法的源代码:点击下面的www

感谢梳理的作者:Y. Wu, J. Lim, and M. Yang. Object tracking benchmark.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9):1834–1848, Sept 2015.2,5,6

NAME CODE REFERENCE
CPF CPF P. Pe ́rez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking. In ECCV, 2002.(基于颜色概率)
KMS KMS D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Object Tracking. PAMI, 25(5):564–577, 2003.(基于核)
SMS SMS R. Collins. Mean-shift Blob Tracking through Scale Space. In CVPR, 2003.(均值漂移)
VR-V VIVID/VR R. T. Collins, Y. Liu, and M. Leordeanu. Online Selection of Discriminative Tracking Features. PAMI, 27(10):1631–1643, 2005. [www] 
* We also evaluated four other trackers included in the VIVID tracker suite. (PD-V, RS-V, MS-V, and TM-V).(在线选择有判别力的跟踪特征)
Frag Frag A. Adam, E. Rivlin, and I. Shimshoni. Robust Fragments-based Tracking using the Integral Histogram. In CVPR, 2006. [www](基于积分直方图的鲁棒性碎片跟踪)
OAB OAB H. Grabner, M. Grabner, and H. Bischof. Real-Time Tracking via On-line Boosting. In BMVC, 2006. [www](基于在线boosting的实时跟踪)
IVT IVT D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental Learning for Robust Visual Tracking. IJCV, 77(1):125–141, 2008. [www](具有鲁棒性的增量学习视觉跟踪)
SemiT SBT H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line Boosting for Robust Tracking. In ECCV, 2008. [www](半监督的在线boosting鲁棒跟踪)
MIL MIL B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009. [www](基于多实例学习的视觉跟踪)
BSBT BSBT S. Stalder, H. Grabner, and L. van Gool. Beyond Semi-Supervised Tracking: Tracking Should Be as Simple as Detection, but not Simpler than Recognition. In ICCV Workshop, 2009. [www](超越半监督跟踪:跟踪应该跟检测一样简单,但比识别麻烦)
TLD TLD Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In CVPR, 2010. [www](基于结构约束的二分类)
VTD J. Kwon and K. M. Lee. Visual Tracking Decomposition. In CVPR, 2010. [www](视觉跟踪分解)
CXT CXT T. B. Dinh, N. Vo, and G. Medioni. Context Tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011. [www](无约束环境中探索 supporters and distracters)
LSK LSK B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust Tracking using Local Sparse Appearance Model and K-Selection. In CVPR, 2011. [www](基于局域稀疏外观模型和k选择的鲁棒性跟踪)
Struck Struck S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking with Kernels. In ICCV, 2011. [www](基于核的结构输出跟踪)
VTS J. Kwon and K. M. Lee. Tracking by Sampling Trackers. In ICCV, 2011. [www](通过采样跟踪器跟踪)
ASLA ASLA X. Jia, H. Lu, and M.-H. Yang. Visual Tracking via Adaptive Structural Local Sparse Appearance Model. In CVPR, 2012. [www](基于自适应的结构化局部稀疏外观模型的视觉跟踪)
DFT DFT L. Sevilla-Lara and E. Learned-Miller. Distribution Fields for Tracking. In CVPR, 2012.[www](跟踪分布)
L1APG L1APG C. Bao, Y. Wu, H. Ling, and H. Ji. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In CVPR, 2012. [www](基于加速概率梯度方法的实时鲁棒性L1跟踪方法)
LOT LOT S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally Orderless Tracking. In CVPR, 2012. [www](局域无序跟踪)
MTT MTT T.Zhang, B. Ghanem,S. Liu,and N. Ahuja. Robust Visual Tracking via Multi-task Sparse Learning. In CVPR, 2012. [www](基于多任务稀疏学习的鲁棒性视觉跟踪)
ORIA ORIA Y. Wu, B. Shen, and H. Ling. Online Robust Image Alignment via Iterative Convex Optimization. In CVPR, 2012. [www](基于迭代凸优化的在线鲁棒图像匹配)
SCM SCM W. Zhong, H. Lu, and M.-H. Yang. Robust Object Tracking via Sparsity-based Collaborative Model. In CVPR, 2012. [www](基于稀疏协同模型的鲁棒性目标跟踪)
CSK CSK F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In ECCV, 2012. [www](在基于检测的跟踪中,使用核探索循环结构)
CT CT K. Zhang, L. Zhang, and M.-H. Yang. Real-time Compressive Tracking. In ECCV, 2012.[www](实时压缩跟踪)
LSHT LSHT S. He, Q. Yang, R. W. H. Lau, J. Wang, and M.-H. Yang. [www]
LSS LSS D. Wang, H. Lu, and M.-H. Yang. Least Soft-thresold Squares Tracking. In CVPR, 2013.(最小软阈值平方跟踪)

测试得到的结果,这里我只给出前7:

Benchmark Results

SRER evaluation results on the TB-50 dataset. Each entry contains the average overlap in percent and the average number of failures in 1000 frames at the overlap threshold 0.5. The trackers are ordered by the average overlap scores, and the top 5 methods in each attribute are denoted by different colors: red, green, blue, cyan, and magenta.

  All BC DEF FM IPR IV LR MB OCC OPR OV SV
STRUCK 57.5
/ 3.6
59.3
/ 3.3
52.4
/ 4.6
55.6
/ 3.8
57.0
/ 3.4
59.0
/ 3.3
59.1
/ 3.9
59.9
/ 2.8
55.9
/ 4.1
57.3
/ 3.7
58.9
/ 3.4
57.8
/ 3.6
SCM 54.4
/ 4.1
61.3
/ 2.9
51.5
/ 4.8
42.8
/ 6.5
51.8
/ 4.3
61.1
/ 3.1
61.7
/ 2.5
45.2
/ 5.9
56.8
/ 3.8
57.0
/ 3.8
56.4
/ 4.5
55.8
/ 3.9
ASLA 53.2
/ 4.1
59.2
/ 3.0
50.5
/ 4.5
42.0
/ 6.5
52.1
/ 4.1
59.6
/ 3.0
59.3
/ 2.3
44.6
/ 5.9
56.0
/ 3.8
56.3
/ 3.7
55.3
/ 4.3
54.0
/ 3.9
CSK 52.4
/ 4.9
55.9
/ 4.2
48.1
/ 5.7
45.8
/ 5.8
52.4
/ 4.7
56.2
/ 4.3
55.0
/ 4.8
50.6
/ 5.1
52.7
/ 5.1
53.3
/ 4.9
53.2
/ 4.9
52.0
/ 5.0
L1APG 50.8
/ 4.8
54.8
/ 4.2
44.6
/ 5.8
44.6
/ 6.0
52.0
/ 4.5
52.9
/ 4.7
59.5
/ 3.2
49.2
/ 5.2
50.9
/ 4.8
50.9
/ 5.0
55.5
/ 4.4
51.0
/ 4.7
OAB 50.3
/ 5.3
50.1
/ 5.1
46.0
/ 6.0
47.4
/ 5.7
51.0
/ 4.9
48.3
/ 5.8
56.2
/ 4.5
49.9
/ 5.1
49.2
/ 5.6
49.2
/ 5.6
50.0
/ 5.6
50.8
/ 5.1
VTD 49.3
/ 5.2
55.1
/ 4.2
46.2
/ 5.5
41.7
/ 6.8
50.2
/ 4.6
53.7
/ 4.6
47.1
/ 5.6
43.5
/ 6.3
52.3
/ 4.9
53.7
/ 4.6
51.5
/ 5.4
48.9
/ 5.4










本文发布于:2024-02-01 12:00:41,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170676004236439.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:Visual   Tracker   Benchmark
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23