[深度学习]资源汇总

阅读: 评论:0

[深度学习]资源汇总

[深度学习]资源汇总



转自:.html#t-cnn

MethodVOC2007VOC2010VOC2012ILSVRC 2013MSCOCO 2015Speed
OverFeat   24.3%  
R-CNN (AlexNet)58.5%53.7%53.3%31.4%  
R-CNN (VGG16)66.0%     
SPP_net(ZF-5)54.2%(1-model), 60.9%(2-model)  31.84%(1-model), 35.11%(6-model)  
DeepID-Net64.1%  50.3%  
NoC73.3% 68.8%   
Fast-RCNN (VGG16)70.0%68.8%68.4% 19.7%(@[0.5-0.95]), 35.9%(@0.5) 
MR-CNN78.2% 73.9%   
Faster-RCNN (VGG16)78.8% 75.9% 21.9%(@[0.5-0.95]), 42.7%(@0.5)198ms
Faster-RCNN (ResNet-101)85.6% 83.8% 37.4%(@[0.5-0.95]), 59.0%(@0.5) 
SSD300 (VGG16)77.2% 75.8% 25.1%(@[0.5-0.95]), 43.1%(@0.5)46 fps
SSD512 (VGG16)79.8% 78.5% 28.8%(@[0.5-0.95]), 48.5%(@0.5)19 fps
ION79.2% 76.4%   
CRAFT75.7% 71.3%48.5%  
OHEM78.9% 76.3% 25.5%(@[0.5-0.95]), 45.9%(@0.5) 
R-FCN (ResNet-50)77.4%    0.12sec(K40), 0.09sec(TitianX)
R-FCN (ResNet-101)79.5%    0.17sec(K40), 0.12sec(TitianX)
R-FCN (ResNet-101),multi sc train83.6% 82.0% 31.5%(@[0.5-0.95]), 53.2%(@0.5) 
PVANet 9.089.8% 84.2%  750ms(CPU), 46ms(TitianX)

Leaderboard


Detection Results: VOC2012

  • intro: Competition “comp4” (train on additional data)
  • homepage: :8080/leaderboard/displaylb.php?challengeid=11&compid=4

Papers


Deep Neural Networks for Object Detection

  • paper: .pdf

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

  • arxiv: .6229
  • github:
  • code: .php?id=software:overfeat:start

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

  • intro: R-CNN
  • arxiv: .2524
  • supp: .pdf
  • slides: .pdf
  • slides: .pdf
  • github:
  • notes: /
  • caffe-pr(“Make R-CNN the Caffe detection example”):

MultiBox

Scalable Object Detection using Deep Neural Networks

  • intro: first MultiBox. Train a CNN to predict Region of Interest.
  • arxiv: .2249
  • github:
  • blog: .html

Scalable, High-Quality Object Detection

  • intro: second MultiBox
  • arxiv: .1441
  • github:

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  • intro: ECCV 2014 / TPAMI 2015
  • arxiv: .4729
  • github:
  • notes: /

DeepID-Net

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

  • intro: PAMI 2016
  • intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations
  • project page: /%CB%9Cwlouyang/projects/imagenetDeepId/index.html
  • arxiv: .5661

Object Detectors Emerge in Deep Scene CNNs

  • arxiv: .6856
  • paper: .pdf
  • paper: .pdf
  • slides: .pdf

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

  • intro: CVPR 2015
  • project(code+data): .html
  • arxiv: .04275
  • github:

NoC

Object Detection Networks on Convolutional Feature Maps

  • intro: TPAMI 2015
  • arxiv: .06066

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

  • arxiv: .03293
  • slides: .pdf
  • github:

Fast R-CNN

Fast R-CNN

  • arxiv: .08083
  • slides: .pdf
  • github:
  • github(COCO-branch):
  • webcam demo:
  • notes: /
  • notes:
  • github(“Fast R-CNN in MXNet”):
  • github:
  • github:
  • github(Tensorflow):

DeepBox

DeepBox: Learning Objectness with Convolutional Networks

  • arxiv: .02146
  • github:

MR-CNN

Object detection via a multi-region & semantic segmentation-aware CNN model

  • intro: ICCV 2015. MR-CNN
  • arxiv: .01749
  • github:
  • notes: /
  • notes: /
  • my notes: Who can tell me why there are a bunch of duplicated sentences in section 7.2 “Detection error analysis”? :-D

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

  • intro: NIPS 2015
  • arxiv: .01497
  • gitxiv:
  • slides: .pdf
  • github(official, Matlab):
  • github:
  • github:
  • github: .torch
  • github:
  • github:
  • github:
  • github(C++ demo):
  • github:

Faster R-CNN in MXNet with distributed implementation and data parallelization

  • github:

Contextual Priming and Feedback for Faster R-CNN

  • intro: ECCV 2016. Carnegie Mellon University
  • paper: .pdf
  • poster: .pdf

An Implementation of Faster RCNN with Study for Region Sampling

  • intro: Technical Report, 3 pages. CMU
  • arxiv: .02138
  • github:

YOLO

You Only Look Once: Unified, Real-Time Object Detection

  • arxiv: .02640
  • code: /
  • github:
  • blog: /
  • slides: =false&loop=false&delayms=3000&slide=id.p
  • reddit: /
  • github:
  • github:
  • github:
  • github:
  • github: .torch
  • github:
  • gtihub:

darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

  • blog:
  • github:

Start Training YOLO with Our Own Data

  • intro: train with customized data and class numbers/labels. Linux / Windows version for darknet.
  • blog: /
  • github:

R-CNN minus R

  • arxiv: .06981

AttentionNet

AttentionNet: Aggregating Weak Directions for Accurate Object Detection

  • intro: ICCV 2015
  • intro: state-of-the-art performance of 65% (AP) on PASCAL VOC 2007/2012 human detection task
  • arxiv: .07704
  • slides: .pdf
  • slides: .pdf

DenseBox

DenseBox: Unifying Landmark Localization with End to End Object Detection

  • arxiv: .04874
  • demo:
  • KITTI result: .php

SSD

SSD: Single Shot MultiBox Detector

  • intro: ECCV 2016 Oral
  • arxiv: .02325
  • paper: .pdf
  • slides: /%7Ewliu/papers/ssd_eccv2016_slide.pdf
  • github:
  • video:
  • github:
  • github: .cpp
  • github:
  • github:
  • github: .pytorch

Inside-Outside Net (ION)

Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks

  • intro: “0.8s per image on a Titan X GPU (excluding proposal generation) without two-stage bounding-box regression and 1.15s per image with it”.
  • arxiv: .04143
  • slides: .pdf
  • coco-leaderboard:

Adaptive Object Detection Using Adjacency and Zoom Prediction

  • intro: CVPR 2016. AZ-Net
  • arxiv: .07711
  • github:
  • youtube: =YmFtuNwxaNM

G-CNN

G-CNN: an Iterative Grid Based Object Detector

  • arxiv: .07729

Factors in Finetuning Deep Model for object detection

Factors in Finetuning Deep Model for Object Detection with Long-tail Distribution

  • intro: CVPR 2016.rank 3rd for provided data and 2nd for external data on ILSVRC 2015 object detection
  • project page: .html
  • arxiv: .05150

We don’t need no bounding-boxes: Training object class detectors using only human verification

  • arxiv: .08405

HyperNet

HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

  • arxiv: .00600

MultiPathNet

A MultiPath Network for Object Detection

  • intro: BMVC 2016. Facebook AI Research (FAIR)
  • arxiv: .02135
  • github:

CRAFT

CRAFT Objects from Images

  • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
  • project page: .html
  • arxiv: .03239
  • paper: .pdf
  • github:

OHEM

Training Region-based Object Detectors with Online Hard Example Mining

  • intro: CVPR 2016 Oral. Online hard example mining (OHEM)
  • arxiv: .03540
  • paper: .pdf
  • github(Official):
  • author page: /

Track and Transfer: Watching Videos to Simulate Strong Human Supervision for Weakly-Supervised Object Detection

  • intro: CVPR 2016
  • arxiv: .05766

Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection Classifiers

  • intro: scale-dependent pooling (SDP), cascaded rejection clas-sifiers (CRC)
  • paper: .pdf

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

  • arxiv: .06409
  • github:
  • github:
  • github(PyTorch):
  • github:

Weakly supervised object detection using pseudo-strong labels

  • arxiv: .04731

Recycle deep features for better object detection

  • arxiv: .05066

MS-CNN

A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection

  • intro: ECCV 2016
  • intro: 640×480: 15 fps, 960×720: 8 fps
  • arxiv: .07155
  • github:
  • poster: .pdf

Multi-stage Object Detection with Group Recursive Learning

  • intro: VOC2007: 78.6%, VOC2012: 74.9%
  • arxiv: .05159

Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

  • intro: WACV 2017. SubCNN
  • arxiv: .04693
  • github:

PVANET

PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

  • intro: “less channels with more layers”, concatenated ReLU, Inception, and HyperNet, batch normalization, residual connections
  • arxiv: .08021
  • github:
  • leaderboard(PVANet 9.0): :8080/leaderboard/displaylb.php?challengeid=11&compid=4

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection

  • intro: Presented at NIPS 2016 Workshop on Efficient Methods for Deep Neural Networks (EMDNN). Continuation ofarXiv:1608.08021
  • arxiv: .08588

GBD-Net

Gated Bi-directional CNN for Object Detection

  • intro: The Chinese University of Hong Kong & Sensetime Group Limited
  • paper: .1007/978-3-319-46478-7_22
  • mirror:

Crafting GBD-Net for Object Detection

  • intro: winner of the ImageNet object detection challenge of 2016. CUImage and CUVideo
  • intro: gated bi-directional CNN (GBD-Net)
  • arxiv: .02579
  • github:

StuffNet

StuffNet: Using ‘Stuff’ to Improve Object Detection

  • arxiv: .05861

Generalized Haar Filter based Deep Networks for Real-Time Object Detection in Traffic Scene

  • arxiv: .09609

Hierarchical Object Detection with Deep Reinforcement Learning

  • intro: Deep Reinforcement Learning Workshop (NIPS 2016)
  • project page: /
  • arxiv: .03718
  • slides:
  • github:
  • blog: /

Learning to detect and localize many objects from few examples

  • arxiv: .05664

Speed/accuracy trade-offs for modern convolutional object detectors

  • intro: Google Research
  • arxiv: .10012

SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving

  • arxiv: .01051
  • github:

Feature Pyramid Network (FPN)

Feature Pyramid Networks for Object Detection

  • intro: Facebook AI Research
  • arxiv: .03144

Action-Driven Object Detection with Top-Down Visual Attentions

  • arxiv: .06704

Beyond Skip Connections: Top-Down Modulation for Object Detection

  • intro: CMU & UC Berkeley & Google Research
  • arxiv: .06851

YOLOv2

YOLO9000: Better, Faster, Stronger

  • arxiv: .08242
  • code: /
  • github(Chainer):
  • github(Keras):
  • github(PyTorch):
  • github(Tensorflow):
  • github(Windows):
  • github:

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

  • github:

DSSD

DSSD : Deconvolutional Single Shot Detector

  • intro: UNC Chapel Hill & Amazon Inc
  • arxiv: .06659

Wide-Residual-Inception Networks for Real-time Object Detection

  • intro: Inha University
  • arxiv: .01243

Attentional Network for Visual Object Detection

  • intro: University of Maryland & Mitsubishi Electric Research Laboratories
  • arxiv: .01478

CC-Net

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

  • intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007
  • arxiv: .07054

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

.10295

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

  • intro: CVPR 2017
  • paper: .pdf
  • github(Caffe):

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

  • intro: CVPR 2017
  • arxiv: .03944

Spatial Memory for Context Reasoning in Object Detection

  • arxiv: .04224

Improving Object Detection With One Line of Code

  • intro: University of Maryland
  • keywords: Soft-NMS
  • arxiv: .04503
  • github:

Accurate Single Stage Detector Using Recurrent Rolling Convolution

  • intro: CVPR 2017
  • arxiv: .05776
  • github:

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

.05775

Detection From Video


Learning Object Class Detectors from Weakly Annotated Video

  • intro: CVPR 2012
  • paper: .pdf

Analysing domain shift factors between videos and images for object detection

  • arxiv: .01186

Video Object Recognition

  • slides: .pptx

Deep Learning for Saliency Prediction in Natural Video

  • intro: Submitted on 12 Jan 2016
  • keywords: Deep learning, saliency map, optical flow, convolution network, contrast features
  • paper:

T-CNN

T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos

  • intro: Winning solution in ILSVRC2015 Object Detection from Video(VID) Task
  • arxiv: .02532
  • github:

Object Detection from Video Tubelets with Convolutional Neural Networks

  • intro: CVPR 2016 Spotlight paper
  • arxiv: .04053
  • paper: .pdf
  • gihtub:

Object Detection in Videos with Tubelets and Multi-context Cues

  • intro: SenseTime Group
  • slides: .pdf
  • slides: .pdf

Context Matters: Refining Object Detection in Video with Recurrent Neural Networks

  • intro: BMVC 2016
  • keywords: pseudo-labeler
  • arxiv: .04648
  • paper: .pdf

CNN Based Object Detection in Large Video Images

  • intro: WangTao @ 爱奇艺
  • keywords: object retrieval, object detection, scene classification
  • slides: .pdf

Object Detection in Videos with Tubelet Proposal Networks

  • arxiv: .06355

Flow-Guided Feature Aggregation for Video Object Detection

  • intro: MSRA
  • arxiv: .10025

Video Object Detection using Faster R-CNN

  • blog: /
  • github:

Object Detection in 3D


Vote3Deep: Fast Object Detection in 3D Point Clouds Using Efficient Convolutional Neural Networks

  • arxiv: .06666

Object Detection on RGB-D


Learning Rich Features from RGB-D Images for Object Detection and Segmentation

  • arxiv: .5736

Differential Geometry Boosts Convolutional Neural Networks for Object Detection

  • intro: CVPR 2016
  • paper: .html

A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation

.03347

Salient Object Detection


This task involves predicting the salient regions of an image given by human eye fixations.

Best Deep Saliency Detection Models (CVPR 2016 & 2015)

.html

Large-scale optimization of hierarchical features for saliency prediction in natural images

  • paper: .pdf

Predicting Eye Fixations using Convolutional Neural Networks

  • paper: =72648

Saliency Detection by Multi-Context Deep Learning

  • paper: .pdf

DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection

  • arxiv: .05484

SuperCNN: A Superpixelwise Convolutional Neural Network for Salient Object Detection

  • paper: www.shengfenghe/supercnn-a-superpixelwise-convolutional-neural-network-for-salient-object-detection.html

Shallow and Deep Convolutional Networks for Saliency Prediction

  • arxiv: .00845
  • github:

Recurrent Attentional Networks for Saliency Detection

  • intro: CVPR 2016. recurrent attentional convolutional-deconvolution network (RACDNN)
  • arxiv: .03227

Two-Stream Convolutional Networks for Dynamic Saliency Prediction

  • arxiv: .04730

Unconstrained Salient Object Detection

Unconstrained Salient Object Detection via Proposal Subset Optimization

  • intro: CVPR 2016
  • project page: .html
  • paper: .pdf
  • github:
  • caffe model zoo:

DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection

  • paper: .pdf

Salient Object Subitizing

  • intro: CVPR 2015
  • intro: predicting the existence and the number of salient objects in an image using holistic cues
  • project page: .html
  • arxiv: .07525
  • paper: .pdf
  • caffe model zoo:

Deeply-Supervised Recurrent Convolutional Neural Network for Saliency Detection

  • intro: ACMMM 2016. deeply-supervised recurrent convolutional neural network (DSRCNN)
  • arxiv: .05177

Saliency Detection via Combining Region-Level and Pixel-Level Predictions with CNNs

  • intro: ECCV 2016
  • arxiv: .05186

Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection

  • arxiv: .08029

A Deep Multi-Level Network for Saliency Prediction

  • arxiv: .01064

Visual Saliency Detection Based on Multiscale Deep CNN Features

  • intro: IEEE Transactions on Image Processing
  • arxiv: .02077

A Deep Spatial Contextual Long-term Recurrent Convolutional Network for Saliency Detection

  • intro: DSCLRCN
  • arxiv: .01708

Deeply supervised salient object detection with short connections

  • arxiv: .04849

Weakly Supervised Top-down Salient Object Detection

  • intro: Nanyang Technological University
  • arxiv: .05345

SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

  • project page: /
  • arxiv: .01081

Visual Saliency Prediction Using a Mixture of Deep Neural Networks

  • arxiv: .00372

A Fast and Compact Salient Score Regression Network Based on Fully Convolutional Network

  • arxiv: .00615

Saliency Detection by Forward and Backward Cues in Deep-CNNs

.00152

Supervised Adversarial Networks for Image Saliency Detection

.07242

Saliency Detection in Video

Deep Learning For Video Saliency Detection

  • arxiv: .00871

Visual Relationship Detection


Visual Relationship Detection with Language Priors

  • intro: ECCV 2016 oral
  • paper: .pdf
  • github:

ViP-CNN: A Visual Phrase Reasoning Convolutional Neural Network for Visual Relationship Detection

  • intro: Visual Phrase reasoning Convolutional Neural Network (ViP-CNN), Visual Phrase Reasoning Structure (VPRS)
  • arxiv: .07191

Visual Translation Embedding Network for Visual Relation Detection

  • arxiv: .08319

Deep Variation-structured Reinforcement Learning for Visual Relationship and Attribute Detection

  • intro: CVPR 2017 spotlight paper
  • arxiv: .03054

Detecting Visual Relationships with Deep Relational Networks

  • intro: CVPR 2017 oral. The Chinese University of Hong Kong
  • arxiv: .03114

Specific Object Deteciton


Face Deteciton

Multi-view Face Detection Using Deep Convolutional Neural Networks

  • intro: Yahoo
  • arxiv: .02766
  • github:

From Facial Parts Responses to Face Detection: A Deep Learning Approach

  • project page: .html

Compact Convolutional Neural Network Cascade for Face Detection

  • arxiv: .01292
  • github:

Face Detection with End-to-End Integration of a ConvNet and a 3D Model

  • intro: ECCV 2016
  • arxiv: .00850
  • github(MXNet):

CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

  • intro: CMU
  • arxiv: .05413

Finding Tiny Faces

  • intro: CMU
  • project page: .html
  • arxiv: .04402
  • github:

Towards a Deep Learning Framework for Unconstrained Face Detection

  • intro: overlap with CMS-RCNN
  • arxiv: .05322

Supervised Transformer Network for Efficient Face Detection

  • arxiv: .05477

UnitBox

UnitBox: An Advanced Object Detection Network

  • intro: ACM MM 2016
  • arxiv: .01471

Bootstrapping Face Detection with Hard Negative Examples

  • author: 万韶华 @ 小米.
  • intro: Faster R-CNN, hard negative mining. state-of-the-art on the FDDB dataset
  • arxiv: .02236

Grid Loss: Detecting Occluded Faces

  • intro: ECCV 2016
  • arxiv: .00129
  • paper: .pdf
  • poster: .pdf

A Multi-Scale Cascade Fully Convolutional Network Face Detector

  • intro: ICPR 2016
  • arxiv: .03536

MTCNN

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks

Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks

  • project page: .html
  • arxiv: .02878
  • github(Matlab):
  • github:
  • github:
  • github(MXNet):
  • github:
  • github(Caffe):
  • github:

Face Detection using Deep Learning: An Improved Faster RCNN Approach

  • intro: DeepIR Inc
  • arxiv: .08289

Faceness-Net: Face Detection through Deep Facial Part Responses

  • intro: An extended version of ICCV 2015 paper
  • arxiv: .08393

Multi-Path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained “Hard Faces”

  • intro: CVPR 2017. MP-RCNN, MP-RPN
  • arxiv: .09145

End-To-End Face Detection and Recognition

.10818

Facial Point / Landmark Detection

Deep Convolutional Network Cascade for Facial Point Detection

  • homepage: .htm
  • paper: .pdf
  • github:

Facial Landmark Detection by Deep Multi-task Learning

  • intro: ECCV 2014
  • project page: .html
  • paper: .pdf
  • github(Matlab):

A Recurrent Encoder-Decoder Network for Sequential Face Alignment

  • intro: ECCV 2016
  • arxiv: .05477

Detecting facial landmarks in the video based on a hybrid framework

  • arxiv: .06441

Deep Constrained Local Models for Facial Landmark Detection

  • arxiv: .08657

Effective face landmark localization via single deep network

  • arxiv: .02719

A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

.01880

People Detection

End-to-end people detection in crowded scenes

  • arxiv: .04878
  • github:
  • ipn: .ipynb

Detecting People in Artwork with CNNs

  • intro: ECCV 2016 Workshops
  • arxiv: .08871

Deep Multi-camera People Detection

  • arxiv: .04593

Person Head Detection

Context-aware CNNs for person head detection

  • arxiv: .07917
  • github:

Pedestrian Detection

Pedestrian Detection aided by Deep Learning Semantic Tasks

  • intro: CVPR 2015
  • project page: /
  • paper: .0069

Deep Learning Strong Parts for Pedestrian Detection

  • intro: ICCV 2015. CUHK. DeepParts
  • intro: Achieving 11.89% average miss rate on Caltech Pedestrian Dataset
  • paper: .pdf

Deep convolutional neural networks for pedestrian detection

  • arxiv: .03608
  • github:

Scale-aware Fast R-CNN for Pedestrian Detection

  • arxiv: .08160

New algorithm improves speed and accuracy of pedestrian detection

  • blog: –nai020516.php

Pushing the Limits of Deep CNNs for Pedestrian Detection

  • intro: “set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from 11.7% to 8.9%”
  • arxiv: .04525

A Real-Time Deep Learning Pedestrian Detector for Robot Navigation

  • arxiv: .04436

A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation

  • arxiv: .04441

Is Faster R-CNN Doing Well for Pedestrian Detection?

  • intro: ECCV 2016
  • arxiv: .07032
  • github:

Reduced Memory Region Based Deep Convolutional Neural Network Detection

  • intro: IEEE 2016 ICCE-Berlin
  • arxiv: .02500

Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection

  • arxiv: .03466

Multispectral Deep Neural Networks for Pedestrian Detection

  • intro: BMVC 2016 oral
  • arxiv: .02644

Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

  • intro: CVPR 2017
  • project page: :5000/publications/synunity/
  • arxiv: .06283
  • github(Tensorflow):

Vehicle Detection

DAVE: A Unified Framework for Fast Vehicle Detection and Annotation

  • intro: ECCV 2016
  • arxiv: .04564

Evolving Boxes for fast Vehicle Detection

  • arxiv: .00254

Traffic-Sign Detection

Traffic-Sign Detection and Classification in the Wild

  • project page(code+dataset): /
  • paper: 120.52.73.11/www.cv-foundation/openaccess/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf
  • code & model: .zip

Boundary / Edge / Contour Detection

Holistically-Nested Edge Detection

  • intro: ICCV 2015, Marr Prize
  • paper: .pdf
  • arxiv: .06375
  • github:

Unsupervised Learning of Edges

  • intro: CVPR 2016. Facebook AI Research
  • arxiv: .04166
  • zn-blog: .html

Pushing the Boundaries of Boundary Detection using Deep Learning

  • arxiv: .07386

Convolutional Oriented Boundaries

  • intro: ECCV 2016
  • arxiv: .02755

Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks

  • project page: /
  • arxiv: .04658
  • github:

Richer Convolutional Features for Edge Detection

  • intro: richer convolutional features (RCF)
  • arxiv: .02103

Skeleton Detection

Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs

  • arxiv: .09446
  • github:

DeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural Images

  • arxiv: .03659

SRN: Side-output Residual Network for Object Symmetry Detection in the Wild

  • intro: CVPR 2017
  • arxiv: .02243
  • github:

Fruit Detection

Deep Fruit Detection in Orchards

  • arxiv: .03677

Image Segmentation for Fruit Detection and Yield Estimation in Apple Orchards

  • intro: The Journal of Field Robotics in May 2016
  • project page: /
  • arxiv: .08120

Part Detection

Objects as context for part detection

.09529

Others

Deep Deformation Network for Object Landmark Localization

  • arxiv: .01014

Fashion Landmark Detection in the Wild

  • intro: ECCV 2016
  • project page: .html
  • arxiv: .03049
  • github(Caffe):

Deep Learning for Fast and Accurate Fashion Item Detection

  • intro: Kuznech Inc.
  • intro: MultiBox and Fast R-CNN
  • paper: .pdf

OSMDeepOD - OSM and Deep Learning based Object Detection from Aerial Imagery (formerly known as “OSM-Crosswalk-Detection”)

  • github:

Selfie Detection by Synergy-Constraint Based Convolutional Neural Network

  • intro: IEEE SITIS 2016
  • arxiv: .04357

Associative Embedding:End-to-End Learning for Joint Detection and Grouping

  • arxiv: .05424

Deep Cuboid Detection: Beyond 2D Bounding Boxes

  • intro: CMU & Magic Leap
  • arxiv: .10010

Automatic Model Based Dataset Generation for Fast and Accurate Crop and Weeds Detection

  • arxiv: .03019

Deep Learning Logo Detection with Data Expansion by Synthesising Context

  • arxiv: .09322

Pixel-wise Ear Detection with Convolutional Encoder-Decoder Networks

  • arxiv: .00307

Automatic Handgun Detection Alarm in Videos Using Deep Learning

  • arxiv: .05147
  • results:

Object Proposal


DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers

  • arxiv: .04445
  • github:

Scale-aware Pixel-wise Object Proposal Networks

  • intro: IEEE Transactions on Image Processing
  • arxiv: .04798

Attend Refine Repeat: Active Box Proposal Generation via In-Out Localization

  • intro: BMVC 2016. AttractioNet
  • arxiv: .04446
  • github:

Learning to Segment Object Proposals via Recursive Neural Networks

  • arxiv: .01057

Learning Detection with Diverse Proposals

  • intro: CVPR 2017
  • keywords: differentiable Determinantal Point Process (DPP) layer, Learning Detection with Diverse Proposals (LDDP)
  • arxiv: .03533

ScaleNet: Guiding Object Proposal Generation in Supermarkets and Beyond

  • keywords: product detection
  • arxiv: .06752

Improving Small Object Proposals for Company Logo Detection

  • intro: ICMR 2017
  • arxiv: .08881

Localization


Beyond Bounding Boxes: Precise Localization of Objects in Images

  • intro: PhD Thesis
  • homepage: .html
  • phd-thesis: .pdf
  • github(“SDS using hypercolumns”):

Weakly Supervised Object Localization with Multi-fold Multiple Instance Learning

  • arxiv: .00949

Weakly Supervised Object Localization Using Size Estimates

  • arxiv: .04314

Active Object Localization with Deep Reinforcement Learning

  • intro: ICCV 2015
  • keywords: Markov Decision Process
  • arxiv: .06015

Localizing objects using referring expressions

  • intro: ECCV 2016
  • keywords: LSTM, multiple instance learning (MIL)
  • paper: .pdf
  • github:

LocNet: Improving Localization Accuracy for Object Detection

  • arxiv: .07763
  • github:

Learning Deep Features for Discriminative Localization

  • homepage: /
  • arxiv: .04150
  • github(Tensorflow):
  • github:
  • github:

ContextLocNet: Context-Aware Deep Network Models for Weakly Supervised Localization

  • intro: ECCV 2016
  • project page: /
  • arxiv: .04331
  • github:

Tutorials / Talks


Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection

  • slides: .pdf

Towards Good Practices for Recognition & Detection

  • intro: Hikvision Research Institute. Supervised Data Augmentation (SDA)
  • slides: .pdf

Projects


TensorBox: a simple framework for training neural networks to detect objects in images

  • intro: “The basic model implements the simple and robust GoogLeNet-OverFeat algorithm. We additionally provide an implementation of theReInspect algorithm”
  • github:

Object detection in torch: Implementation of some object detection frameworks in torch

  • github: .torch

Using DIGITS to train an Object Detection network

  • github: .md

FCN-MultiBox Detector

  • intro: Full convolution MultiBox Detector (like SSD) implemented in Torch.
  • github: .torch

KittiBox: A car detection model implemented in Tensorflow.

  • keywords: MultiNet
  • intro: KittiBox is a collection of scripts to train out model FastBox on the Kitti Object Detection Dataset
  • github:

Tools


BeaverDam: Video annotation tool for deep learning training labels

Blogs


Convolutional Neural Networks for Object Detection

/

Introducing automatic object detection to visual search (Pinterest)

  • keywords: Faster R-CNN
  • blog:
  • demo: .mp4
  • review: /?mkt_tok=eyJpIjoiTnpaa01UWXpPRE0xTURFMiIsInQiOiJJRjcybjkwTmtmallORUhLOFFFODBDclFqUlB3SWlRVXJXb1MrQ013TDRIMGxLQWlBczFIeWg0TFRUdnN2UHY2ZWFiXC9QQVwvQzBHM3B0UzBZblpOSmUyU1FcLzNPWXI4cml2VERwTTJsOFwvOEk9In0%3D

Deep Learning for Object Detection with DIGITS

  • blog: /

Analyzing The Papers Behind Facebook’s Computer Vision Approach

  • keywords: DeepMask, SharpMask, MultiPathNet
  • blog: .html

How to Train a Deep-Learned Object Detection Model in the Microsoft Cognitive Toolkit

  • blog: /
  • github:

Object Detection in Satellite Imagery, a Low Overhead Approach

  • part 1: .2csh4iwx9
  • part 2: .f9b7dgf64

You Only Look Twice — Multi-Scale Object Detection in Satellite Imagery With Convolutional Neural Networks

  • part 1: .fmmi2o3of
  • part 2: .nwzarsz1t

Faster R-CNN Pedestrian and Car Detection

  • blog: /
  • ipn:
  • github:

Small U-Net for vehicle detection

  • blog: /@vivek.yadav/small-u-net-for-vehicle-detection-9eec216f9fd6#.md4u80kad

Region of interest pooling explained

  • blog: /
  • github:

本文发布于:2024-02-01 12:45:41,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170676274336688.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:深度   资源
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23