首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher,
1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类”。
导入库
读取数据
数据字段介绍:
sepal_length:花萼长度,单位cm
sepal_width:花萼宽度,单位cm
petal_length:花瓣长度,单位cm
petal_width:花瓣宽度,单位cm
种类:setosa(山鸢尾),versicolor(杂色鸢尾),virginica(弗吉尼亚鸢尾)
在做categorical
visualization的时候,seaborn给出了基础的stripplot & swarmplot, boxplot & violinplot, barplot & pointplot,以及抽象化的factorplot.下面就用纸鸢花数据集做一下讲解。
StripplotStripplot的本质就是把数据集中具有quantitative属性的变量按照类别去做散点图(Scatterplot)。
我们将纸鸢花数据集中不同种类花的sepal length做stripplot可视化
plt.show()
本文发布于:2024-02-01 16:16:39,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170677539737876.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |