全网最全大数据面试提升手册!
本文详细阐述了在 “批处理后,流处理之前” 进行文件 Clustering 操作的方法。该方法可以将众多小文件合并成数量极少的大文件,从而防止过多小文件的产生。
在批处理结束后进行 Clustering 主要涉及如下几个步骤,它们主要都是通过 spark-submit 命令完成的:
制定 Clustering 计划,找到
首先用 bulk_insert 方式运行批处理任务。注意下面的操作都是在批处理任务完成后,接流之前进行。
查看表相关的 hdfs,可以发现由于使用了 bulk_insert 的方式写入数据,导致文件数量非常多,而每个文件的 Size 非常小。我们希望将每个分区的1000多个小文件聚合成几个大文件,以免造成不必要的查询和系统维护开销。
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -count /flk_hudi/chdrpf_hudi_test03/*7 7 32637997 /flk_hudi/chdrpf_hudi_test03/.hoodie1 1067 571117942 /flk_hudi/chdrpf_hudi_test03/11 1071 716513820 /flk_hudi/chdrpf_hudi_test03/21 1072 644997032 /flk_hudi/chdrpf_hudi_test03/31 1072 507397985 /flk_hudi/chdrpf_hudi_test03/41 1069 730774472 /flk_hudi/chdrpf_hudi_test03/51 1067 586561261 /flk_hudi/chdrpf_hudi_test03/61 1063 557377359 /flk_hudi/chdrpf_hudi_test03/71 1070 483416155 /flk_hudi/chdrpf_hudi_test03/81 1071 587965407 /flk_hudi/chdrpf_hudi_test03/A1 1071 570651877 /flk_hudi/chdrpf_hudi_test03/B1 1068 796163049 /flk_hudi/chdrpf_hudi_test03/C1 1064 732633320 /flk_hudi/chdrpf_hudi_test03/D1 1067 524777141 /flk_hudi/chdrpf_hudi_test03/E1 1070 550302848 /flk_hudi/chdrpf_hudi_test03/F1 1076 540059544 /flk_hudi/chdrpf_hudi_test03/G1 1071 590094172 /flk_hudi/chdrpf_hudi_test03/H1 1076 505755100 /flk_hudi/chdrpf_hudi_test03/I1 1068 606771875 /flk_hudi/chdrpf_hudi_test03/J1 1068 495261290 /flk_hudi/chdrpf_hudi_test03/K1 1067 516964732 /flk_hudi/chdrpf_hudi_test03/L1 1060 482056347 /flk_hudi/chdrpf_hudi_test03/M1 1054 607625266 /flk_hudi/chdrpf_hudi_test03/N1 1077 551989638 /flk_hudi/chdrpf_hudi_test03/O1 1076 590537140 /flk_hudi/chdrpf_hudi_test03/P1 1069 536362956 /flk_hudi/chdrpf_hudi_test03/Q1 1072 559723804 /flk_hudi/chdrpf_hudi_test03/R1 1067 546042696 /flk_hudi/chdrpf_hudi_test03/S1 1059 528438508 /flk_hudi/chdrpf_hudi_test03/T1 1063 518288413 /flk_hudi/chdrpf_hudi_test03/U1 1070 543146873 /flk_hudi/chdrpf_hudi_test03/V1 1066 532588113 /flk_hudi/chdrpf_hudi_test03/W1 1069 494606809 /flk_hudi/chdrpf_hudi_test03/X1 1079 527128056 /flk_hudi/chdrpf_hudi_test03/Y1 1068 477378497 /flk_hudi/chdrpf_hudi_test03/Z1 1075 471848267 /flk_hudi/chdrpf_hudi_test03/a
查看当前 hdfs 路径下的文件个数。可以发现由于 bulk_insert 导致小文件非常之多,这会显著影响查询的性能 (一次查询可能要做几千个 IO 操作)。
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -count /flk_hudi/chdrpf_hudi_test03/43 37452 22269590565 /flk_hudi/chdrpf_hudi_test03
使用最简配置方法如下
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ cat /home/hadoop/hudi_clustering/clusteringjob.properties
hoodie.clustering.inline.maxmits=2
hoodie.clustering.plan.strategy.ups=40
添加高级配置项
[hadoop@p0-tklfrna-tklrna-device02 ~]$ cat /home/hadoop/hudi_clustering/clusteringjob.properties
hoodie.clustering.inline=true
hoodie.clustering.inline.maxmits=2
hoodie.clustering.plan.strategy.ups=40
hoodie.clustering.plan.strategy.target.file.max.bytes=1073741824
hoodie.clustering.plan.strategy.max.up=2147483648
hoodie.clustering.plan.strategy.small.file.limit=629145600
指定 Clustering 计划。计划制定完毕后 Hudi 对应 hdfs 的 Timeline 中会出现相应时间戳,以供执行计划。
spark-submit
--master yarn
--class org.apache.hudi.utilities.HoodieClusteringJob
hdfs://nameservice1/utility_jars/hudi-utilities-bundle_2.12-0.10.0.jar
--schedule
--base-path hdfs://nameservice1/flk_hudi/chdrpf_hudi_test03
--table-name chdrpf_hudi_test03
--props file:///home/hadoop/hudi_clustering/clusteringjob.properties
--spark-memory 16g
> /home/hadoop/hudi_clustering/clusteringjob.log 2>&1
查看 Hdfs 中的 Hudi 的 Timeline 获取时间戳。文件后缀为 20220826105913373
,以便下一步粘贴。
[hadoop@p0-tklfrna-tklrna-device02 ~]$ hdfs dfs -ls /flk_hudi/chdrpf_hudi_test03/.hoodie/
Found 407 items
drwxr-xr-x - hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.hoodie/.aux
drwxr-xr-x - hadoop supergroup 0 2022-08-26 14:53 /flk_hudi/chdrpf_hudi_test03/.hoodie/.temp
-rw-r--r-- 3 hadoop supergroup 18596070 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101036547mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101036547.inflight
-rw-r--r-- 3 hadoop supergroup 14041389 2022-08-26 10:16 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101404432mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101404432.inflight
...
-rw-r--r-- 3 hadoop supergroup 5685565 2022-08-26 10:59 /flk_hudi/chdrpf_hudi_test03/.quested
...
Clustering 执行需要使用刚才的时间戳配置 --instant-time 20220826105913373
于命令中即可执行。
spark-submit
--master yarn
--class org.apache.hudi.utilities.HoodieClusteringJob
hdfs://nameservice1/utility_jars/hudi-utilities-bundle_2.12-0.10.0.jar
--instant-time 20220826105913373
--base-path hdfs://nameservice1/flk_hudi/chdrpf_hudi_test03
--table-name chdrpf_hudi_test03
--props file:///home/hadoop/hudi_clustering/clusteringjob.properties
--spark-memory 16g
> /home/hadoop/hudi_clustering/clusteringjob_execution.log 2>&1
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -count /flk_hudi/chdrpf_hudi_test03/*7 10 39759457 /flk_hudi/chdrpf_hudi_test03/.hoodie1 1068 644693330 /flk_hudi/chdrpf_hudi_test03/11 1072 912384991 /flk_hudi/chdrpf_hudi_test03/21 1073 783040567 /flk_hudi/chdrpf_hudi_test03/31 1073 535431665 /flk_hudi/chdrpf_hudi_test03/41 1070 938545286 /flk_hudi/chdrpf_hudi_test03/51 1068 676230669 /flk_hudi/chdrpf_hudi_test03/61 1064 625387487 /flk_hudi/chdrpf_hudi_test03/71 1071 494572949 /flk_hudi/chdrpf_hudi_test03/81 1072 675599389 /flk_hudi/chdrpf_hudi_test03/A1 1072 643710911 /flk_hudi/chdrpf_hudi_test03/B1 1069 1056860522 /flk_hudi/chdrpf_hudi_test03/C1 1065 940690081 /flk_hudi/chdrpf_hudi_test03/D1 1068 563929957 /flk_hudi/chdrpf_hudi_test03/E1 1071 606406555 /flk_hudi/chdrpf_hudi_test03/F1 1077 589463777 /flk_hudi/chdrpf_hudi_test03/G1 1072 682564783 /flk_hudi/chdrpf_hudi_test03/H1 1077 529816271 /flk_hudi/chdrpf_hudi_test03/I1 1069 712917512 /flk_hudi/chdrpf_hudi_test03/J1 1069 514668751 /flk_hudi/chdrpf_hudi_test03/K1 1068 550874973 /flk_hudi/chdrpf_hudi_test03/L1 1061 495250431 /flk_hudi/chdrpf_hudi_test03/M1 1055 716887761 /flk_hudi/chdrpf_hudi_test03/N1 1078 612144859 /flk_hudi/chdrpf_hudi_test03/O1 1077 679350316 /flk_hudi/chdrpf_hudi_test03/P1 1070 586176818 /flk_hudi/chdrpf_hudi_test03/Q1 1073 625760986 /flk_hudi/chdrpf_hudi_test03/R1 1068 603042997 /flk_hudi/chdrpf_hudi_test03/S1 1060 576062292 /flk_hudi/chdrpf_hudi_test03/T1 1064 555764103 /flk_hudi/chdrpf_hudi_test03/U1 1071 598050377 /flk_hudi/chdrpf_hudi_test03/V1 1066 532588113 /flk_hudi/chdrpf_hudi_test03/W1 1069 494606809 /flk_hudi/chdrpf_hudi_test03/X1 1079 527128056 /flk_hudi/chdrpf_hudi_test03/Y1 1068 477378497 /flk_hudi/chdrpf_hudi_test03/Z1 1075 471848267 /flk_hudi/chdrpf_hudi_test03/a
在进行完 Clustering 操作后,很多小文件都被合并进大文件了。由于 Hudi 不会主动删除过期和不必要的文件,因此需要利用手动清理策略来对过期文件进行清理删除。
清理策略的配置文件
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ cat /home/hadoop/hudi_clustering/hudi_cleaning.properties
# hudi_cleaning.properties# When enabled, the cleaner table service is invoked immediately after each commit, to delete older file slices
hoodie.clean.automatic=true# Only applies when hoodie.clean.automatic is turned on.
# When turned on runs cleaner async with writing, which can speed up overall write performance.
hoodie.clean.async=true# # This policy has the effect of keeping N number of file versions irrespective of time.
# # This policy is useful when it is known how many MAX versions of the file does one want to keep at any given time.
# # hoodie.cleaner.policy=KEEP_LATEST_COMMITS
hoodie.cleaner.policy=KEEP_LATEST_COMMITS# # Number of commits to retain, without cleaning.
# # This will be retained for num_of_commits * time_between_commits (scheduled).
# # ained=3
# When KEEP_LATEST_FILE_VERSIONS cleaning policy is used,
# the minimum number of file slices to retain in each file group, during cleaning.
ained=1# When set to true, cleaner also deletes the bootstrap base file when it's skeleton base file is cleaned.
hoodie.cleaner.delete.bootstrap.base.file=false
# Only if the log file size is greater than the threshold in bytes, the file group will be compacted.hoodiemits.archival.batch=small.file.limit.bytes=104857600
# When set to true, compaction service is triggered after each write.
# While being simpler operationally, this adds extra latency on the write path.
hoodiepact.inline=falsehoodie.parquet.small.file.limit=124857600hoodie.cleaner.parallelism=800hoodie.de=true# Archiving service moves older entries from timeline into an archived log after each write,
# to keep the metadata overhead constant, even as the table size grows
hoodie.keep.maxmits=3
hoodie.keep.minmits=2
利用命令执行清理策略
spark-submit
--class org.apache.hudi.utilities.HoodieCleaner
hdfs://nameservice1/utility_jars/hudi-utilities-bundle_2.12-0.10.0.jar
--props file:///home/hadoop/hudi_clustering/hudi_cleaning.properties
--target-base-path hdfs://nameservice1/flk_hudi/chdrpf_hudi_test03
> /home/hadoop/hudi_clustering/clusteringjob_cleaning.log 2>&1
此时,可以将流处理任务接至该 Hudi 表中。文件清理的效果会在 Hudi 接流后显现。
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -count /flk_hudi/chdrpf_hudi_test03/* 39 2818 61047630 /flk_hudi/chdrpf_hudi_test03/.hoodie1 5 295730057 /flk_hudi/chdrpf_hudi_test03/11 5 581449403 /flk_hudi/chdrpf_hudi_test03/21 5 541564433 /flk_hudi/chdrpf_hudi_test03/31 5 113526185 /flk_hudi/chdrpf_hudi_test03/41 5 819123981 /flk_hudi/chdrpf_hudi_test03/51 5 361258893 /flk_hudi/chdrpf_hudi_test03/61 4 205559110 /flk_hudi/chdrpf_hudi_test03/71 4 33721101 /flk_hudi/chdrpf_hudi_test03/81 5 352884732 /flk_hudi/chdrpf_hudi_test03/A1 5 294248033 /flk_hudi/chdrpf_hudi_test03/B1 5 771533591 /flk_hudi/chdrpf_hudi_test03/C1 5 614827884 /flk_hudi/chdrpf_hudi_test03/D1 5 157676833 /flk_hudi/chdrpf_hudi_test03/E1 5 226004511 /flk_hudi/chdrpf_hudi_test03/F1 5 198656601 /flk_hudi/chdrpf_hudi_test03/G1 5 372307018 /flk_hudi/chdrpf_hudi_test03/H1 5 97041611 /flk_hudi/chdrpf_hudi_test03/I1 5 427390894 /flk_hudi/chdrpf_hudi_test03/J1 5 78296341 /flk_hudi/chdrpf_hudi_test03/K1 5 136428423 /flk_hudi/chdrpf_hudi_test03/L1 5 53218521 /flk_hudi/chdrpf_hudi_test03/M1 5 439899957 /flk_hudi/chdrpf_hudi_test03/N1 5 242278011 /flk_hudi/chdrpf_hudi_test03/O1 5 357549763 /flk_hudi/chdrpf_hudi_test03/P1 5 200702230 /flk_hudi/chdrpf_hudi_test03/Q1 5 265952714 /flk_hudi/chdrpf_hudi_test03/R1 5 229783530 /flk_hudi/chdrpf_hudi_test03/S1 5 191817537 /flk_hudi/chdrpf_hudi_test03/T1 5 151138760 /flk_hudi/chdrpf_hudi_test03/U1 5 221236895 /flk_hudi/chdrpf_hudi_test03/V1 4112 2060894265 /flk_hudi/chdrpf_hudi_test03/W1 4117 1910706738 /flk_hudi/chdrpf_hudi_test03/X1 4169 2042792364 /flk_hudi/chdrpf_hudi_test03/Y1 2221 995253322 /flk_hudi/chdrpf_hudi_test03/Z1 1075 472877437 /flk_hudi/chdrpf_hudi_test03/a
可以看到每个分区内的小文件已经被聚合成大文件,并随着流数据的进入,文件数量的增长速度也在合理范围内。
Ps: 我们把后几个分区作为对照组没有进行文件聚合。可以通过在 Clustering 的配置文件中调大 hoodie.clustering.plan.strategy.ups=30
的值来增加 SparkJob 的 parallelism 从而把所有分区涵盖进行,进行文件聚合。
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -count /flk_hudi/chdrpf_hudi_test03/76 19050 17396389394 /flk_hudi/chdrpf_hudi_test03
20220826114108591.clean
表示进行完毕清理操作的时刻
20220826114317026mit
表示进行完毕新数据写入操作的时刻
[hadoop@p0-tklfrna-tklrna-device02 hudi_clustering]$ hdfs dfs -ls /flk_hudi/chdrpf_hudi_test03/.hoodie
Found 30 items
drwxr-xr-x - hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.hoodie/.aux
drwxr-xr-x - hadoop supergroup 0 2022-08-26 11:46 /flk_hudi/chdrpf_hudi_test03/.hoodie/.temp
-rw-r--r-- 3 hadoop supergroup 18596070 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101036547mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:10 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101036547.inflight
-rw-r--r-- 3 hadoop supergroup 14041389 2022-08-26 10:16 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101404432mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 10:14 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826101404432.inflight
-rw-r--r-- 3 hadoop supergroup 1435895 2022-08-26 11:09 /flk_hudi/chdrpf_hudi_test03/.placecommit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:03 /flk_hudi/chdrpf_hudi_test03/.placecommit.inflight
-rw-r--r-- 3 hadoop supergroup 5685565 2022-08-26 10:59 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 1009885 2022-08-26 11:37 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826113342082mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:33 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:33 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826113342082.inflight
-rw-r--r-- 3 hadoop supergroup 3811303 2022-08-26 11:40 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826113740364mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:37 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:37 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826113740364.inflight
-rw-r--r-- 3 hadoop supergroup 2940587 2022-08-26 11:43 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826114026452mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:40 /flk_hudi/chdrpf_hudi_test03/.quested
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:40 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826114026452.inflight
-rw-r--r-- 3 hadoop supergroup 5005100 2022-08-26 11:41 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826114108591.clean
-rw-r--r-- 3 hadoop supergroup 4260649 2022-08-26 11:41 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826114108591.clean.inflight
-rw-r--r-- 3 hadoop supergroup 4260649 2022-08-26 11:41 /flk_hudi/chdrpf_hudi_test03/.hoodie/quested
-rw-r--r-- 3 hadoop supergroup 2867542 2022-08-26 11:46 /flk_hudi/chdrpf_hudi_test03/.hoodie/20220826114317026mit
-rw-r--r-- 3 hadoop supergroup 0 2022-08-26 11:43 /flk_hudi/chdrpf_hudi_test03/.quested
如果这个文章对你有帮助,不要忘记 「在看」 「点赞」 「收藏」 三连啊喂!
2022年全网首发|大数据专家级技能模型与学习指南(胜天半子篇)
互联网最坏的时代可能真的来了
我在B站读大学,大数据专业
我们在学习Flink的时候,到底在学习什么?
193篇文章暴揍Flink,这个合集你需要关注一下
Flink生产环境TOP难题与优化,阿里巴巴藏经阁YYDS
Flink CDC我吃定了耶稣也留不住他!| Flink CDC线上问题小盘点
我们在学习Spark的时候,到底在学习什么?
在所有Spark模块中,我愿称SparkSQL为最强!
硬刚Hive | 4万字基础调优面试小总结
数据治理方法论和实践小百科全书
标签体系下的用户画像建设小指南
4万字长文 | ClickHouse基础&实践&调优全视角解析
【面试&个人成长】2021年过半,社招和校招的经验之谈
大数据方向另一个十年开启 |《硬刚系列》第一版完结
我写过的关于成长/面试/职场进阶的文章
当我们在学习Hive的时候在学习什么?「硬刚Hive续集」
本文发布于:2024-02-02 01:59:57,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170681402640683.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |