【我的python机器学习之路·6】用keras做路透社新闻分类

阅读: 评论:0

【我的python机器学习之路·6】用keras做路透社新闻分类

【我的python机器学习之路·6】用keras做路透社新闻分类

本系列日记GitHub:

欢迎follow和star。

代码:

# -*- coding: utf-8 -*-
"""
Created on Fri Nov 30 09:22:03 2018@author: zhengyuv
"""
from keras.datasets import reuters
import numpy as np
from keras import models
from keras import layers
import matplotlib.pyplot as plt
from keras import metrics#read dataset
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(path=r'D:datasetsreuters.npz', num_words=10000)def vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1return resultsx_train = vectorize_sequences(train_data)
x_test = vectorize_sequences(test_data)y_train = vectorize_sequences(train_labels, dimension=46)
y_test = vectorize_sequences(test_labels, dimension=46)#model definition
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000, )))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))#model compile
modelpile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])#split data
x_val = x_train[:1000]
x_train = x_train[1000:]
y_val = y_train[:1000]
y_train = y_train[1000:]#fit model
history = model.fit(x_train,y_train,epochs=20,batch_size=512,validation_data=(x_val,y_val))#plot
loss = history.history['loss']
val_loss = history.history['val_loss']
acc = history.history['acc']
val_acc = history.history['val_acc']
epochs = range(1, len(loss)+1)plt.plot(epochs, loss, 'bo', label='training loss')
plt.plot(epochs, val_loss, 'r', label='validation loss')
plt.title('training and validation loss')
plt.xlabel('epochs')
plt.ylabel('loss')
plt.legend()
plt.show()plt.clf()
plt.plot(epochs, acc, 'bo', label='training acc')
plt.plot(epochs, val_acc, 'r', label='validation acc')
plt.title('training and validation accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()#test
score = model.evaluate(x_test, y_test)
print("测试集损失为:", score[0])
print("测试集准确率为:",score[1])

epochs=20时的运行结果:

测试集损失为: 1.209260282618386
测试集准确率为: 0.778717720444884

epochs=9时的运行结果:

测试集损失为: 0.9810770916705246
测试集准确率为: 0.7880676759212865

 

本文发布于:2024-02-02 04:43:34,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170682021541429.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:之路   路透社   机器   新闻   python
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23