路透社数据集

阅读: 评论:0

路透社数据集

路透社数据集

文章目录

  • 路透社数据集简介
  • keras中使用路透社数据集
    • 加载数据集
    • 准备数据
      • 数据样本向量化
      • 标签向量化
    • 创建验证集
    • 构建网络
    • 编译模型
    • 训练模型
    • 绘制训练损失和验证损失
    • 绘制训练精度和验证精度
    • 评估模型
    • 预测

路透社数据集简介

路透社数据集包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它是一个简单的、广泛使用的文本分类数据集。它包括 46 个不同的主题:某些主题的样本更多,但训练集中每个主题都有至少 10 个样本。
有 8982 个训练样本和 2246 个测试样本

keras中使用路透社数据集

与 IMDB 和 MNIST 类似,路透社数据集也内置为 Keras 的一部分

加载数据集

参数 num_words=10000 将数据限定为前 10 000 个最常出现的单词
有 8982 个训练样本和 2246 个测试样本
每个样本都是一个整数列表(表示单词索引)
样本对应的标签是一个 0~45 范围内的整数,即话题索引编号

from keras.datasets import reuters
(train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
# 查看数据
print(len(train_data))
print(len(test_data))
# 输出第十个数据
print(train_data[10])
# 输出第十个数据的标签
print(train_labels[10])

准备数据

数据样本向量化

import numpy as np
# 数据向量化
def vectorize_sequences(sequences, dimension=10000):results = np.zeros((len(sequences), dimension))for i, sequence in enumerate(sequences):results[i, sequence] = 1.return results
x_train = vectorize_sequences(train_data) 
x_test = vectorize_sequences(test_data)

标签向量化

将标签向量化有两种方法:

  1. 将标签列表转换为整数张量
  2. 使用 one-hot 编码,one-hot 编码是分类数据广泛使用的一种格式,也叫分类编码(categorical encoding)

在这个例子中,标签的 one-hot 编码就是将每个标签表示为全零向量,只有标签索引对应的元素为 1。

# 标签向量化
def to_one_hot(labels, dimension=46):results = np.zeros((len(labels), dimension))for i, label in enumerate(labels):results[i, label] = 1.return results
one_hot_train_labels = to_one_hot(train_labels) 
one_hot_test_labels = to_one_hot(test_labels) 

标签向量化可以使用Keras 内置方法

from keras.utils.np_utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

另一种编码标签的方法,就是将其转换为整数张量

y_train = np.array(train_labels)
y_test = np.array(test_labels)

创建验证集

x_val = x_train[:1000]
partial_x_train = x_train[1000:]
y_val = one_hot_train_labels[:1000]
partial_y_train = one_hot_train_labels[1000:]

构建网络

网络的最后一层是大小为 46 的 Dense 层。这意味着,对于每个输入样本,网络都会输
出一个 46 维向量。这个向量的每个元素(即每个维度)代表不同的输出类别。
最后一层使用了 softmax 激活。网络将输出在 46个不同输出类别上的概率分布——对于每一个输入样本,网络都会输出一个 46 维向量,其中 output[i] 是样本属于第 i 个类别的概率。46 个概率的总和为 1。
对于这个例子,最好的损失函数是 categorical_crossentropy(分类交叉熵)。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布。通过将这两个分布的距离最小化,训练网络可使输出结果尽可能接近真实标签。

from keras import models
from keras import layers
model = models.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(46, activation='softmax'))

编译模型

使用one-hot编码对标签进行向量化时使用的损失函数为categorical_crossentropy

modelpile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

对于将标签列表转换为整数张量这种编码方法,唯一需要改变的是损失函数的选择。对于整数标签,应该使用sparse_categorical_crossentropy。

modelpile(optimizer='rmsprop',loss='sparse_categorical_crossentropy',metrics=['acc'])

训练模型

history = model.fit(partial_x_train,partial_y_train,epochs=50,batch_size=128,validation_data=(x_val, y_val))

绘制训练损失和验证损失

import matplotlib.pyplot as plt
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(loss) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()

绘制训练精度和验证精度

plt.clf()  # 清空图像
acc = history.history['acc']
val_acc = history.history['val_acc']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show()

评估模型

results = model.evaluate(x_test, one_hot_test_labels)
print(results)

预测

predictions = model.predict(x_test)
print(predictions)

本文发布于:2024-02-02 04:44:22,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170682026141434.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:路透社   数据
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23