ZOJ 3380 Patchouli's Spell Cards(概率DP)

阅读: 评论:0

ZOJ 3380 Patchouli's Spell Cards(概率DP)

ZOJ 3380 Patchouli's Spell Cards(概率DP)

传送门


Patchouli Knowledge, the unmoving great library, is a magician who has settled down in the Scarlet Devil Mansion (紅魔館). Her specialty is elemental magic employing the seven elements fire, water, wood, metal, earth, sun, and moon. So she can cast different spell cards like Water Sign “Princess Undine”, Moon Sign “Silent Selene” and Sun Sign “Royal Flare”. In addition, she can combine the elements as well. So she can also cast high-level spell cards like Metal & Water Sign “Mercury Poison” and Fire, Water, Wood, Metal & Earth Sign “Philosopher’s Stones” .

Assume that there are m different elements in total, each element has n different phase. Patchouli can use many different elements in a single spell card, as long as these elements have the same phases. The level of a spell card is determined by the number of different elements used in it. When Patchouli is going to have a fight, she will choose m different elements, each of which will have a random phase with the same probability. What’s the probability that she can cast a spell card of which the level is no less than l, namely a spell card using at least l different elements.

Input

There are multiple cases. Each case contains three integers 1 ≤ m, n, l ≤ 100. Process to the end of file.

Output

For each case, output the probability as irreducible fraction. If it is impossible, output “mukyu~” instead.

Sample Input
7 6 5
7 7 7
7 8 9
Sample Output
187/15552
1/117649
mukyu~

题目大意:

题目的原意是比较难理解的,将题目抽象一下:有 m 个格子,每个格子可以用 n 种颜色进行涂色,求在这 m 个格子中颜色相同的格子数目 ≥ L 的概率。

解题思路:
考虑 DP ,设 dp[i][j]:用前 i 种颜色涂 j 个格子的概率 (是在 m 个格子中涂 j 个,并不是前 j 个),那么有:
dp[i][j]=∑k=0k≤jk<ldp[i−1][j−k]∗C[m−(j−k)][k]
解释:因为第 i 种颜色可以不涂,可以涂一个格子,可以涂两个格子,以此类推。
初始化: dp[0][0]=1
因为结果太大,所以考虑 java 大数

import java.math.BigInteger;
import java.util.Scanner;public class Main {static BigInteger C[][] = new BigInteger[105][105];public static void Init(){for(int i=0; i<105; i++) for(int j=0; j<105; j++) C[i][j] = BigInteger.ZERO;for(int i=0; i<105; i++) C[i][0] = BigInteger.ONE;for(int i=1; i<105; i++) for(int j=1; j<105; j++) C[i][j]=C[i][j].add(C[i-1][j].add(C[i-1][j-1]));}public static void main(String[] args) {Init();Scanner in = new Scanner(System.in);    while(in.hasNext()){int m, n, l;m = in.nextInt(); n = in.nextInt(); l = in.nextInt();if(l > m){System.out.println("mukyu~");continue;}BigInteger dp[][] = new BigInteger[105][105];for(int i=0; i<105; i++) for(int j=0; j<105; j++) dp[i][j] = BigInteger.ZERO;dp[0][0] = BigInteger.ONE;for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){for(int k=0; k<=j&&k<l; k++){dp[i][j] = dp[i][j].add(dp[i-1][j-k].multiply(C[m-(j-k)][k]));}}}BigInteger ans = BigInteger.valueOf(n).pow(m);BigInteger tmp = BigInteger.ZERO;for(int i=1; i<=n; i++) tmp = tmp.add(dp[i][m]);tmp = ans.subtract(tmp);BigInteger gcd = d(ans);System.out.println(tmp.divide(gcd)+"/"+ans.divide(gcd));}}
}

本文发布于:2024-02-02 09:55:23,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170683892243028.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:概率   Patchouli   ZOJ   DP   Cards
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23