TOPSIS 优劣解距离法 学习笔记

阅读: 评论:0

TOPSIS 优劣解距离法 学习笔记

TOPSIS 优劣解距离法 学习笔记

目录

一.TOPSIS方法(优劣解距离法)

二.步骤

1.指标正向化

(1)极小型指标的正向化

(2)中间型指标的正向化

(3)区间型指标的正向化

2.计算得分

三.拓展-增加权重

(1)判断矩阵

(2)熵权法

步骤:

局限:


一.TOPSIS方法(优劣解距离法)

逼近理想解排序法。

针对已有数据的评价类问题,将各个指标合理得分,方便最终比较得出最佳方案。

二.步骤

1.指标正向化

常见的指标共有四种:极大型指标、极小型指标、中间型指标、区间型指标。

统一指标类型后,评分就可以准确的反映所有指标影响下的准确评分,否则不会所有评分都是越高越好的。

(1)极小型指标的正向化

最小的数据对应最高的评分:{max-x}。

(2)中间型指标的正向化

最中间数据对应的评分最高,与中间数据的距离越为接近,评分越高:{ }

(3)区间型指标的正向化

最接近于某个区域的评分最高,为最高值,而区间外与上下界越为接近,评分越高:

[a,b]为最佳区间,M=max{a-min{},b-max{}},=,<a;=1,a<=<=b;

=,>b 

2.计算得分

 正向化矩阵标准化去除量纲,根据最大值与最小值之间的差值,归一化计算得分。

评分:真实反映出分数的落差性,两个方案之间的评分差距变大的时候,评分能够反映出两者之间的差距,而不是当所有方案相对位置不变的时候,数据的浮动与评分没有一点关联性。

归一化:最终归一化,实际上找到一个标杆,如成绩的百分制一般,能更加清晰的衡量评分的相对地位,其与最高分或者最低分之间的距离也就显而易见了。

三.拓展-增加权重

(1)判断矩阵

像层次分析法那样利用判断矩阵来确定指标的权重,具有主观性。

(2)熵权法

根据数据本身确定权重,一种客观赋权方法,根据指标的变异程度反映信息量的大小确定权重。

也有着明显的问题。

步骤:

1.正向化后的矩阵标准化,且需要标准化到非负区间。

2.计算第j项指标下第i个样本所占的比重,其看做相对熵计算中用到的概率。

3.计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权。

局限:

不同方式标准化得到的结果可能有很大差异。

当几乎相当于无的高权重数据出现的时候,会被熵权法忽视,造成结果上的严重错漏。

四.总结

实际上,TOPSIS方法是将所有指标放在同一个标准上,这样就可以依据数据得到每一个方案之间的优劣,或者说“评分”。

个人认为,TOPSIS的核心就在于正向化上了,正向化的过程就是在某个n维坐标系中,我知晓最优值的坐标,只需要足够接近这个最优坐标,评价也就趋向于最优。

本文发布于:2024-02-02 17:28:01,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170686608245331.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:优劣   学习笔记   距离   TOPSIS
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23