该方法对数据分布及样本含量没有严格限制,数据计算简单易行。基本计算过程:
假设有 n n n个评价对象(单元),每个对象都有 m m m个指标(属性),则原始数据矩阵为:
[ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] begin{bmatrix} x_{11} & x_{12} & cdots & x_{1m} \ x_{21} & x_{22} & cdots & x_{2m} \ vdots & vdots & ddots & vdots \ x_{n1} & x_{n2} & cdots & x_{nm} end{bmatrix} ⎣⎢⎢⎢⎡x11x21⋮xn1x12x22⋮xn2⋯⋯⋱⋯x1mx2m⋮xnm⎦⎥⎥⎥⎤
构造加权规范矩阵,进行属性向量归一化:
P i j = x i j ∑ k = 1 n x i j 2 P_{ij} = cfrac{x_{ij}}{sqrt{sum_{k=1}^n x_{ij}^2}} Pij=∑k=1nxij2 xij
根据专家知识(经验)判定法,得到每个指标的权重 w j w_j wj,进行向量定权:
z i j = w j ∗ P i j z_{ij}=w_{j}*P_{ij} zij=wj∗Pij
据此得到归一化和定权后的标准化矩阵 Z Z Z:
Z = [ z 11 z 12 ⋯ z 1 m z 21 z 22 ⋯ z 2 m ⋮ ⋮ ⋱ ⋮ z n 1 z n 2 ⋯ z n m ] Z=begin{bmatrix} z_{11} & z_{12} & cdots & z_{1m} \ z_{21} & z_{22} & cdots & z_{2m} \ vdots & vdots & ddots & vdots \ z_{n1} & z_{n2} & cdots & z_{nm} end{bmatrix} Z=⎣⎢⎢⎢⎡z11z21⋮zn1z12z22⋮zn2⋯⋯⋱⋯z1mz2m⋮znm⎦⎥⎥⎥⎤
最优方案 Z + Z^+ Z+由 Z Z Z中每列元素的最大值构成:
z j + = m a x ( z 1 j , z 2 j , . . . , z n j ) z_j^+=max(z_{1j},z_{2j},...,z_{nj}) zj+=max(z1j,z2j,...,znj)
最劣方案 Z − Z^- Z−由 Z Z Z中每列元素的最小值构成:
z j − = m i n ( z 1 j , z 2 j , . . . , z n j ) z_j^-=min(z_{1j},z_{2j},...,z_{nj}) zj−=min(z1j,z2j,...,znj)
D i + = ∑ j m ( z j + − z i j ) 2 D_i^+=sqrt{sum_{j}^m (z_j^+-z_{ij})^2} Di+=∑jm(zj+−zij)2
D i − = ∑ j m ( z j − − z i j ) 2 D_i^-=sqrt{sum_{j}^m (z_j^--z_{ij})^2} Di−=∑jm(zj−−zij)2
式中:
D i + D_i^+ Di+——各评价对象与最优方案的距离;
D i − D_i^- Di−——各评价对象与最劣方案的距离。
C i = D i − D i + + D i − C_i=cfrac{D_i^-}{D_i^++D_i^-} Ci=Di++Di−Di−
其中, 0 ≤ C i ≤ 1 0≤C_i≤1 0≤Ci≤1, C i → 1 C_ito1 Ci→1表明评价对象越优。
% X 原始数据矩阵
%%
X = [272.4177072 1 7.355278093 4347332.577 0 31.12372304 0.227014756375.6157635 1 76.97044335 615763.5468 1582.512315 4.618226601 3.60529556732.53308412 0 1.498814173 176331.0792 347.4603916 1.995186162 0.839309487194.1872098 0 0 0 128.2610369 0 050.35513622 0 0 0 1275.840136 0.265027033 0.17120746331.03355222 0 13.61540883 69735.54016 242.0841954 2.097013583 0.75582441349.18393814 0 0 0 154.1586121 0 0.489392419283.7729816 0 6.039168665 199840.1279 1613.709033 5.40567546 0.80735411739.11678419 0 18.52900304 77204.17932 607.8542385 4.632250759 0.319110608481.0996564 1 0 0 3161.512027 8.987575998 0.52868094144.26064221 0 200.1127877 17089.05104 187.6377805 0.854452552 0.017089051];sumZi = sqrt(sum(X .^ 2));
sizeX = size(X);
Zij = X - X;% 权重
w = [0.132 0.132 0.132 0.3 0.099 0.099 0.099]; % 构造加权规范矩阵,进行属性向量归一化,获取Zij
for i = 1 : sizeX(2)Zij(:, i) = X(:, i) / sumZi(i) * w(i);
endZplus = max(Zij);
Zminus = min(Zij);Dplus_i = zeros(sizeX(1), 1);
Dminus_i = Dplus_i;Zplus_ij = X - X;
Zminus_ij = X - X;for i = 1 : sizeX(2)for j = 1 : sizeX(1)Zplus_ij(j, i) = (Zplus(i) - Zij(j, i)) ^ 2;Zminus_ij(j, i) = (Zminus(i) - Zij(j, i)) ^ 2;end
endfor i = 1 : sizeX(1)Dplus_i(i) = sqrt(sum(Zplus_ij(i, :)));Dminus_i(i) = sqrt(sum(Zminus_ij(i, :)));
endCi = Dminus_i ./ (Dminus_i + Dplus_i);
输出结果:
>> CiCi =0.65820.35220.06940.07260.07820.06020.03480.16270.06550.28780.2615>>
欢迎大家批评指正!
本文发布于:2024-02-02 17:28:21,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170686610145333.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |