linux安装tensorflow-gpu,思路就是从底层到上层一层层安装
driver 驱动版本 cuda cudnn版本和变量 anaconda python tf环境
已安装本版信息:
NVIDIA-SMI 390.132 Driver Version: 390.132
cuda V9.0.176
Anaconda3-5.2.0-Linux-x86_64
pycharm-professional-2018.3.
Python 3.6.5 |Anaconda, Inc.| (default, Apr 29 2018, 16:14:56)
[GCC 7.2.0] on linux
tensorflow-gpu 1.9.0
[root@S-CentOS home]# cat /proc/version
Linux version 2.6.32-431.el6.x86_64 (mockbuild@c6b8.s) (gcc version 4.4.7 20120313 (Red Hat 4.4.7-4) (GCC) ) #1 SMP Fri Nov 22 03:15:09 UTC 2013
[root@S-CentOS home]# uname -a
Linux S-CentOS 2.6.32-431.el6.x86_64 #1 SMP Fri Nov 22 03:15:09 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux
lsb_release -a,即可列出所有版本信息:
[root@S-CentOS ~]# lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noarch
Distributor ID: CentOS
Description: CentOS release 6.5 (Final)
Release: 6.5
Codename: Final
这个命令适用于所有的Linux发行版,包括RedHat、SUSE、Debian…等发行版。
[root@S-CentOS home]# cat /etc/redhat-release
CentOS release 6.5 (Final)
[root@S-CentOS home]# cat /etc/issue
CentOS release 6.5 (Final)
Kernel r on an m
python
import tensorflow as tf
tf.__version__
查询tensorflow安装路径为:
tf.__path__
import tensorflow as tf
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:a = tf.constant(1)b = tf.constant(3)c = a + bprint('结果是:%dn 值为:%d' % (sess.run(c), sess.run(c)))
cat /usr/local/
查看cuda信息
nvcc -V,
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
lspci | grep -i nvidia
sudo dpkg --list | grep nvidia-*
nvida-smi
nvcc -V
import os
from tensorflow.python.client import device_lib
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "99"if __name__ == "__main__":print(device_lib.list_local_devices())
法2
# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b) # Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c))
显示如下:
Device mapping:
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: Tesla K40c, pci bus
id: 0000:05:00.0
b: /job:localhost/replica:0/task:0/device:GPU:0
a: /job:localhost/replica:0/task:0/device:GPU:0
MatMul: /job:localhost/replica:0/task:0/device:GPU:0 [[ 22. 28.] [ 49. 64.]]
cmake/gcc/g++ --version 查看
cat /etc/redhat-release
本文发布于:2024-02-03 01:56:13,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170689657347875.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |