window10+TensorRT

阅读: 评论:0

window10+TensorRT

window10+TensorRT

一、准备工具

1.1、visual studio下载安装

参考:vs2019社区版下载教程(详细)_Redamancy_06的博客-CSDN博客_vs2019社区版

1.2、显卡驱动+cuda+cudnn安装

参考:win10系统+3060显卡驱动+cuda11.5+cudnn8.3安装_Bubble_water的博客-CSDN博客

一定要安装好visual studio软件之后再安装cuda(或者重装cuda),并且选择visual studio integration,否则后期配置会出现麻烦还需要自己复制一些东西去解决问题

1.3、tensorrt安装

参考:有道云笔记

1.4、cmake下载安装

cmake版本3.25.1,可以根据自己的情况选择安装自己需要的版本

官方网址:

下载地址:

.25.1/cmake-3.25.1-windows-x86_64.msi.25.1/cmake-3.25.1-windows-x86_64.msi

 

 

 

 

 

 1.5、opencv下载:

自己源码编译,参考:win10+vs2017+opencv4.0.1+opencv_contrib-4.0.1详细教程_Bubble_water的博客-CSDN博客

或者直接下载官方编译好的文件,按照自己需要的版本下载:

Releases · opencv/opencv · GitHub
 

二、yolov5和tensorrtx源码下载
2.1、将下载下来的yolov5和tensorrtx仓库切换到6.2版本
yolov5仓库:,将其下载下来

将&#里面会需要这个文件

切换到v6.2tag:

git checkout v6.2

如下图所示:

 2.2、tensorrtx仓库:,将其下载下来

切换到yolov5-v6.2tag:

git checkout yolov5-v6.2

如下图所示:

 四、cmake编译工程

4.1、修改tensorrtx里面的内容如下:

cmake_minimum_required(VERSION 2.6)project(yolov5) #1
set(OpenCV_DIR "E:\workspace\dll\opencv4\build")  #2
set(OpenCV_INCLUDE_DIRS ${OpenCV_DIR}\include) #3
set(OpenCV_LIB_DIRS ${OpenCV_DIR}\x64\vc16\lib) #4
set(OpenCV_Debug_LIBS "opencv_world454d.lib") #5
set(OpenCV_Release_LIBS "opencv_world454.lib") #6
set(TRT_DIR "E:\workspace\dll\tensorrt\TensorRT-8.2.5.1\TensorRT-8.2.5.1")  #7
set(TRT_INCLUDE_DIRS ${TRT_DIR}\include) #8
set(TRT_LIB_DIRS ${TRT_DIR}\lib) #9
set(Dirent_INCLUDE_DIRS "E:\yolov5\dirent\include") #10add_definitions(-std=c++11)
add_definitions(-DAPI_EXPORTS)option(CUDA_USE_STATIC_CUDA_RUNTIME OFF)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_BUILD_TYPE Debug)set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads)# setup CUDA
find_package(CUDA REQUIRED)
message(STATUS "    libraries: ${CUDA_LIBRARIES}")
message(STATUS "    include path: ${CUDA_INCLUDE_DIRS}")include_directories(${CUDA_INCLUDE_DIRS})####
enable_language(CUDA)  # add this line, then no need to setup cuda path in vs
####
include_directories(${PROJECT_SOURCE_DIR}/include) #11
include_directories(${TRT_INCLUDE_DIRS}) #12
link_directories(${TRT_LIB_DIRS}) #13
include_directories(${OpenCV_INCLUDE_DIRS}) #14
link_directories(${OpenCV_LIB_DIRS}) #15
include_directories(${Dirent_INCLUDE_DIRS}) #16# -D_MWAITXINTRIN_H_INCLUDED for solving error: identifier "__builtin_ia32_mwaitx" is undefined
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11 -Wall -Ofast -D_MWAITXINTRIN_H_INCLUDED")# setup opencv
find_package(OpenCV QUIETNO_MODULENO_DEFAULT_PATHNO_CMAKE_PATHNO_CMAKE_ENVIRONMENT_PATHNO_SYSTEM_ENVIRONMENT_PATHNO_CMAKE_PACKAGE_REGISTRYNO_CMAKE_BUILDS_PATHNO_CMAKE_SYSTEM_PATHNO_CMAKE_SYSTEM_PACKAGE_REGISTRY
)message(STATUS "OpenCV library status:")
message(STATUS "    version: ${OpenCV_VERSION}")
message(STATUS "    lib path: ${OpenCV_LIB_DIRS}")
message(STATUS "    Debug libraries: ${OpenCV_Debug_LIBS}")
message(STATUS "    Release libraries: ${OpenCV_Release_LIBS}")
message(STATUS "    include path: ${OpenCV_INCLUDE_DIRS}")#add_executable(yolov5 ${PROJECT_SOURCE_DIR}/yolov5.cpp ${PROJECT_SOURCE_DIR}/common.hpp ${PROJECT_SOURCE_DIR}/yololayer.cu ${PROJECT_SOURCE_DIR}/yololayer.h)   #17add_executable(yolov5 ${PROJECT_SOURCE_DIR}/yolov5.cpp ${PROJECT_SOURCE_DIR}/yololayer.cu ${PROJECT_SOURCE_DIR}/yololayer.h ${PROJECT_SOURCE_DIR}/preprocess.cu ${PROJECT_SOURCE_DIR}/preprocess.h)   #4  ${PROJECT_SOURCE_DIR}/preprocess.cu ${PROJECT_SOURCE_DIR}/preprocess.h  这是后来加的用于解决错误2,下面也有说明target_link_libraries(yolov5 "nvinfer" "nvinfer_plugin") #18
target_link_libraries(yolov5 debug ${OpenCV_Debug_LIBS}) #19
target_link_libraries(yolov5 optimized ${OpenCV_Release_LIBS}) #20
target_link_libraries(yolov5 ${CUDA_LIBRARIES}) #21
target_link_libraries(yolov5 Threads::Threads)  

4.2、cmake运行

 选择自己的vs编译器版本和系统版本

 

 

 

 

 

 将tensorrtxyolov5gen_wts.py复制到

运行

#python gen_wts.py文件路径 -w pt权重文件路径

python gen_wts.py -w yolov5s.pt

运行结果如下:

 打开自己刚才build下面的Release文件夹,运行

需要将opencv_world454.dll放到Release文件夹下面,将wts序列化保持成tensorrt的engine格式

命令如下:

 ./ -s "E:yolov5yolov5yolov5s.wts" ine s

 检测测试,说明成功了。接下来就是自己根据自己的情况进行封装程序了

 

 

 参考:

  • tensorrtx/run_on_windows.md at master · wang-xinyu/tensorrtx · GitHub
  • Tensorrtx+yolov5+windows10+vs2015+cuda11.1关键问题及步骤记录_如雾如电的博客-CSDN博客
  • windows上配置TensorRT yolov5 -6.0部署 tensorrtx视频流推理_野马AS的博客-CSDN博客
  • win10 tensorrtx yolov5使用方法_三毛的二哥的博客-CSDN博客_tensorrtx yolov5
  • win10 使用TensorRT部署 yolov5-v4.0(C++)_SongpingWang的博客-CSDN博客_yolov5 4.0
  • 【TensorRT】记一次使用C++接口TensorRT部署yolov5 v6.1模型的过程-pudn
  • Win10—YOLOv5实战+TensorRT部署+VS2019编译(小白教程~易懂易上手)---超详细_畅想未来2020的博客-CSDN博客_win yolo5编译
  • windows上配置TensorRT yolov5 -6.1部署 tensorrtx视频流推理-CFANZ编程社区
  • yolov5部署之七步完成tensorRT模型推理加速_Christo3的博客-CSDN博客_yolov5 tensorrt
  • YoloV5在tensorRT上加速(Windows)(C++)(webcam)_点PY的博客-CSDN博客_yolov5中webcam是什么

本文发布于:2024-02-03 02:00:01,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170689680147894.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:TensorRT
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23