假设X是从真实的数据(或语料库)中抽取的样本,其服从一个相对可参考的概率密度函数P(d),噪音样本Y服从概率密度函数为P(n),噪音对比估计(NCE)就是通过学习一个分类器把这两类样本区别开来,并能从模型中学到数据的属性。
模型原始论文:Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
tensorflow引用:Candidate Sampling Algorithms Reference
[ text{让$U=Xbigcup Y={u1,u2,⋯,u_{T_d}+u_{T_n}}$,其中$T_d$为数据样本个数,$T_n$为噪音分布的样本个数。那么我们认为$u_t$服从(0-1)分布,给每个$u_t$一个标签$C_t$,则} ]
[ C_t= begin{cases} 1, & text{if $u_t in X$} \ 0, & tex
本文发布于:2024-02-03 03:33:59,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170690243948383.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |