NCE损失(Noise

阅读: 评论:0

NCE损失(Noise

NCE损失(Noise

1.算法概述

假设X是从真实的数据(或语料库)中抽取的样本,其服从一个相对可参考的概率密度函数P(d),噪音样本Y服从概率密度函数为P(n),噪音对比估计(NCE)就是通过学习一个分类器把这两类样本区别开来,并能从模型中学到数据的属性。

模型原始论文:Noise-contrastive estimation: A new estimation principle for unnormalized statistical models
tensorflow引用:Candidate Sampling Algorithms Reference

2.算法要点与推导

2.1损失函数定义:

[ text{让$U=Xbigcup Y={u1,u2,⋯,u_{T_d}+u_{T_n}}$,其中$T_d$为数据样本个数,$T_n$为噪音分布的样本个数。那么我们认为$u_t$服从(0-1)分布,给每个$u_t$一个标签$C_t$,则} ]

[ C_t= begin{cases} 1, & text{if $u_t in X$} \ 0, & tex

本文发布于:2024-02-03 03:33:59,感谢您对本站的认可!

本文链接:https://www.4u4v.net/it/170690243948383.html

版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。

标签:损失   NCE   Noise
留言与评论(共有 0 条评论)
   
验证码:

Copyright ©2019-2022 Comsenz Inc.Powered by ©

网站地图1 网站地图2 网站地图3 网站地图4 网站地图5 网站地图6 网站地图7 网站地图8 网站地图9 网站地图10 网站地图11 网站地图12 网站地图13 网站地图14 网站地图15 网站地图16 网站地图17 网站地图18 网站地图19 网站地图20 网站地图21 网站地图22/a> 网站地图23