原文:
Identify a voice as male or female
Gender Recognition by Voice and Speech Analysis
This database was created to identify a voice as male or female, based upon acoustic properties of the voice and speech. The dataset consists of 3,168 recorded voice samples, collected from male and female speakers. The voice samples are pre-processed by acoustic analysis in R using the seewave and tuneR packages, with an analyzed frequency range of 0hz-280hz (human vocal range).
The following acoustic properties of each voice are measured and included within the CSV:
meanfreq: mean frequency (in kHz)
sd: standard deviation of frequency
median: median frequency (in kHz)
Q25: first quantile (in kHz)
Q75: third quantile (in kHz)
IQR: interquantile range (in kHz)
skew: skewness (see note in specprop description)
kurt: kurtosis (see note in specprop description)
sfm: spectral flatness
mode: mode frequency
centroid: frequency centroid (see specprop)
peakf: peak frequency (frequency with highest energy)
meanfun: average of fundamental frequency measured across acoustic signal
minfun: minimum fundamental frequency measured across acoustic signal
maxfun: maximum fundamental frequency measured across acoustic signal
meandom: average of dominant frequency measured across acoustic signal
mindom: minimum of dominant frequency measured across acoustic signal
maxdom: maximum of dominant frequency measured across acoustic signal
dfrange: range of dominant frequency measured across acoustic signal
modindx: modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental frequencies divided by the frequency range
label: male or female
meanfreq | sd | median | Q25 | Q75 | IQR | skew | kurt | < | sfm |
0.059780985 | 0.064241268 | 0.032026913 | 0.015071489 | 0.09019344 | 0.075121951 | 12.86346184 | 274.4029055 | 0.893369417 | 0.491917766 |
0.06600874 | 0.067310029 | 0.040228735 | 0.019413867 | 0.09266619 | 0.073252323 | 22.42328536 | 634.6138545 | 0.892193242 | 0.513723843 |
0.077315503 | 0.083829421 | 0.036718459 | 0.008701057 | 0.131908017 | 0.123206961 | 30.75715458 | 1024.927705 | 0.846389092 | 0.478904979 |
0.151228092 | 0.072110587 | 0.158011187 | 0.096581728 | 0.207955252 | 0.111373524 | 1.232831276 | 4.17729621 | 0.963322462 | 0.727231799 |
0.135120387 | 0.0791461 | 0.124656229 | 0.078720218 | 0.206044929 | 0.127324711 | 1.101173666 | 4.333713155 | 0.971955076 | 0.783568058 |
0.132786407 | 0.079556866 | 0.119089848 | 0.067957993 | 0.209591599 | 0.141633606 | 1.932562432 | 8.308895037 | 0.963181346 | 0.738307004 |
0.15076233 | 0.074463205 | 0.160106383 | 0.092898936 | 0.205718085 | 0.112819149 | 1.530643231 | 5.987497658 | 0.96757307 | 0.76263767 |
0.160514332 | 0.076766885 | 0.144336775 | 0.110532168 | 0.231961875 | 0.121429706 | 1.397156365 | 4.766610695 | 0.95925457 | 0.719857907 |
0.142239417 | 0.078018462 | 0.138587444 | 0.088206278 | 0.208587444 | 0.120381166 | 1.099746151 | 4.070283706 | 0.970722932 | 0.770992054 |
0.134328777 | 0.080350028 | 0.121451347 | 0.075579989 | 0.201957119 | 0.12637713 | 1.190368444 | 4.787309833 | 0.975246143 | 0.804505253 |
0.157020511 | 0.071942931 | 0.168160153 | 0.101429933 | 0.216739752 | 0.115309819 | 0.979442275 | 3.974222626 | 0.965249139 | 0.733692878 |
0.138550521 | 0.077053993 | 0.127526596 | 0.08731383 | 0.202739362 | 0.115425532 | 1.626769867 | 6.291365079 | 0.966003775 | 0.752042013 |
0.137342742 | 0.080876707 | 0.124262508 | 0.083144899 | 0.209226771 | 0.126081871 | 1.378728204 | 5.008951625 | 0.963513528 | 0.736149955 |
0.181225459 | 0.060042055 | 0.190953206 | 0.128838821 | 0.229532062 | 0.100693241 | 1.369430458 | 5.475599788 | 0.93744576 | 0.537079995 |
0.183115281 | 0.06698235 | 0.191232529 | 0.129148666 | 0.240152478 | 0.111003812 | 3.568104024 | 35.38474845 | 0.940332623 | 0.571394202 |
0.174272105 | 0.069411045 | 0.190874107 | 0.115601979 | 0.228279274 | 0.112677295 | 4.48503835 | 61.76490831 | 0.950972025 | 0.635199178 |
0.190846298 | 0.065790282 | 0.207950987 | 0.132280463 | 0.244356705 | 0.112076242 | 1.562303683 | 7.834349886 | 0.938546013 | 0.538809584 |
0.171246971 | 0.07487157 | 0.152806653 | 0.122390852 | 0.243617464 | 0.121226611 | 3.207169827 | 25.76556494 | 0.936953537 | 0.586419514 |
译:
确定一个声音是男性还是女性
通过语音和语音分析进行性别识别
该数据库的创建是为了根据声音和语音的声学特性,将声音识别为男性或女性。该数据集由3168个录音语音样本组成,这些样本来自男性和女性演讲者。使用seewave和调谐器软件包在R中通过声学分析预处理语音样本,分析频率范围为0hz-280hz(人声范围)。
测量每个声音的以下声学特性,并将其包含在CSV中:
● meanfreq:平均频率(单位:kHz)
● sd:频率的标准偏差
● median:中值频率(单位:kHz)
● Q25:第一个分位数(单位:kHz)
● Q75:第三分位数(单位:kHz)
● IQR:分位数范围(单位:kHz)
●skew:歪斜(见specprop说明中的注释)
●kurt:峰度(见specprop说明中的注释)
● sp.ent:光谱熵
● sfm:光谱平坦度
● mode:模式频率
● centroid:频率质心(参见specprop)
● peakf:峰值频率(能量最高的频率)
● meanfun:声学信号中测得的基频平均值
● minfun:通过声信号测量的最小基频
● maxfun:通过声信号测量的最大基频
● meandom:声学信号中测得的主频的平均值
● mindom:声信号中测得的主频最小值
● maxdom:声信号中测得的主频的最大值
● dfrange:通过声学信号测量的主频范围
● modindx:调制指数。计算为基频相邻测量值之间的累积绝对差除以频率范围
● label:男性或女性
大家可以到官网地址下载数据集,我自己也在百度网盘分享了一份。可关注本人公众号,回复“202204”获取下载链接。
本文发布于:2024-02-03 05:37:43,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170690986349000.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |