
HDU - 3982
题意:半平面交 + 圆与多边形的面积并.
转换成圆与三角形的面积并,分四种情况讨论一下.
1 #include <bits/stdc++.h>
2 using namespace std;
3 const double pi = acos(-1.0);
4 const int maxn = 2010;
5 const int inf = 0x3f3f3f3f;
6 const double eps = 1e-8;
7 struct Point {
8 double x,y;
9 Point (double x = 0, double y = 0) : x(x), y(y) {}
10 };
11 typedef Point Vector;
12 struct Circle{
13 Point o;
14 double r;
15 Circle(){}
16 Circle(Point o, double r) : o(o), r(r){}
17 //Point point(double a){
18 // return Point(o.x + cos(a)*r, o.y + sin(a)*r);
19 //}
20 };
21 Vector operator + (Vector a, Vector b) {
22 return Vector (a.x + b.x, a.y + b.y);
23 }
24 Vector operator * (Vector a, double s) {
25 return Vector (a.x * s, a.y * s);
26 }
27 Vector operator / (Vector a, double p) {
28 return Vector (a.x / p, a.y / p);
29 }
30 Vector operator - (Point a, Point b) {
31 return Vector (a.x - b.x, a.y - b.y);
32 }
33 bool operator < (Point a, Point b) {
34 return a.x < b.x || (a.x == b.x && a.y < b.y);
35 }
36 int dcmp (double x) {
37 if(fabs(x) < eps) return 0;
38 return x < 0 ? -1 : 1;
39 }
40 bool operator == (const Point &a, const Point &b) {
41 return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
42 }
43 double Dot(Vector a, Vector b) {
44 return a.x * b.x + a.y * b.y;
45 }
46 double Angle(Vector a){
47 return atan2(a.y, a.x);
48 }
49 double Length(Vector a) {
50 return sqrt(Dot(a, a));
51 }
52 double Cross (Vector a, Vector b) {
53 return a.x * b.y - a.y * b.x;
54 }
55 //半平面交
56 struct Line {
57 Point p;
58 Vector v;
59 double rad;
60 Line () {}
61 Line (Point p, Vector v) : p(p), v(v) {
62 rad = atan2(v.y,v.x);
63 }
64 bool operator < (const Line &L) const {
65 return rad < L.rad;
66 }
67 };
68 bool OnLeft(Line L, Point p) {
69 return Cross(L.v, p - L.p) > 0;
70 }
71 Point GetLineIntersection (Line a, Line b) {
72 Vector u = a.p - b.p;
73 double t = Cross(b.v, u) / Cross(a.v, b.v);
74 return a.p + a.v*t;
75 }
76
77 int HalfplaneIntersection(Line *L, int n,Point *poly) {
78 sort(L, L+n);
79 int first,last;
80 Point *p = new Point[n];
81 Line *q = new Line[n]; //双端队列
82 q[first = last = 0] = L[0];
83 for(int i = 1; i < n; i++) {
84 while(first < last && !OnLeft(L[i], p[last-1])) last--; //去尾
85 while(first < last && !OnLeft(L[i], p[first])) first++;
86 q[++last] = L[i];
87 if(dcmp(Cross(q[last].v, q[last-1].v)) == 0) {
88 last--;
89 if(OnLeft(q[last], L[i].p)) q[last] = L[i];
90 }
91 if(first < last) p[last-1] = GetLineIntersection (q[last-1],q[last]);
92 }
93 while(first < last && !OnLeft(q[first], p[last-1])) last--; //删除无用平面
94 if(last - first <= 1) {
95 delete []p;
96 delete []q;
97 return 0; //空集
98 }
99 p[last] = GetLineIntersection (q[last], q[first]);
100 int m = 0;
101 for(int i = first; i <= last; i++) poly[m++] = p[i];
102 delete []p;
103 delete []q;
104 return m;
105 }
106 Point p[maxn][2], poly[maxn];
107 Line line[maxn];
108 Circle cr;
109 Point goal;
110 //线段AB与圆的交点
111 void LineIntersectionCircle(Point A, Point B, Circle cr, Point *p, int &num){
112 double x0 = cr.o.x, y0 = cr.o.y;
113 double x1 = A.x, y1 = A.y, x2 = B.x, y2 = B.y;
114 double dx = x2 - x1, dy = y2 - y1;
115 double a = dx * dx + dy * dy;
116 double b = 2 * dx *(x1 - x0) + 2 * dy * (y1 -y0);
117 double c = (x1 - x0) * (x1 - x0) + (y1 - y0) * (y1 - y0) - cr.r *cr.r;
118 double delta = b*b - 4*a*c;
119 num = 0;
120 if(dcmp(delta) >= 0){
121 double t1 = (-b - sqrt(delta)) / (2*a);
122 double t2 = (-b + sqrt(delta)) / (2*a);
123 if(dcmp(t1-1) <= 0 && dcmp(t1) >= 0) {
124 p[num++] = Point(x1 + t1*dx, y1 + t1*dy);
125 }
126 if(dcmp(t2-1) <= 0 && dcmp(t2) >= 0) {
127 p[num++] = Point(x1 + t2*dx, y1 + t2*dy);
128 }
129 }
130 }
131 //扇形面积
132 double SectorArea(Point a, Point b, Circle cr){
133 double theta = Angle(a - cr.o) - Angle(b - cr.o);
134 while(theta <= 0) theta += 2*pi;
135 while(theta > 2*pi) theta -= 2*pi;
136 theta = min(theta, 2*pi - theta);
137 return cr.r * cr.r * theta / 2;
138 }
139
140 double cal(Point a, Point b, Circle cr){
141 Point tp[3];
142 int num = 0;
143 Vector ta = a - cr.o;
144 Vector tb = b - cr.o;
145 bool ina = (Length(ta) - cr.r) < 0;
146 bool inb = (Length(tb) - cr.r) < 0;
147 if(ina){
148 if(inb){
149 return fabs(Cross(ta, tb))/2;
150 } else{
151 LineIntersectionCircle(a, b, cr, tp, num);
152 return SectorArea(b, tp[0], cr) + fabs(Cross(ta, tp[0] - cr.o))/2;
153 }
154 } else{
155 if(inb){
156 LineIntersectionCircle(a, b, cr, tp, num);
157 return SectorArea(a, tp[0], cr) + fabs(Cross(tb, tp[0] - cr.o))/2;
158 } else {
159 LineIntersectionCircle(a, b, cr, tp, num);
160 if(num == 2) {
161 return SectorArea(a, tp[0], cr) + SectorArea(b, tp[1], cr) + fabs(Cross(tp[0]-cr.o, tp[1]-cr.o))/2;
162 } else {
163 return SectorArea(a, b, cr);
164 }
165 }
166 }
167 }
168 //圆与多边形的面积并
169 double CirclePolyArea(Point *p, int n, Circle cr){
170 double res = 0;
171 p[n] = p[0];
172 for(int i = 0; i < n; i++){
173 int sgn = dcmp(Cross(p[i] - cr.o, p[i+1] - cr.o));
174 if(sgn){
175 res += sgn * cal(p[i], p[i+1], cr);
176 }
177 }
178 return res;
179 }
180
181
182 int main(){
183 //freopen(", "r", stdin);
184 int t, kase = 0;
185 scanf("%d", &t);
186 while(t--){
187 int n;
188 double r;
189 scanf("%lf %d", &r, &n);
190 cr.r = r;
191 cr.o = Point(0, 0);
192 for(int i = 0; i < n; i++){
193 for(int j = 0; j < 2; j++){
194 scanf("%lf %lf", &p[i][j].x, &p[i][j].y);
195 }
196 }
197 scanf("%lf %lf", &goal.x, &goal.y);
198 for(int i = 0; i < n; i++){
199 Line lp = Line(p[i][0], p[i][0] - p[i][1]);
200 if(OnLeft(lp, goal)){
201 line[i] = lp;
202 }else {
203 line[i] = Line(p[i][0], p[i][1] - p[i][0]);
204 }
205 }
206 Point p1 = Point(-11111, -11111), p2 = Point(-11111, 11111);
207 Point p3 = Point(11111, 11111), p4 = Point(11111, -11111);
208 line[n] = Line(p1, p1-p2);
209 line[n+1] = Line(p2, p2-p3);
210 line[n+2] = Line(p3, p3-p4);
211 line[n+3] = Line(p4, p4-p1);
212 int sz = HalfplaneIntersection(line, n+4, poly);
213 double area = CirclePolyArea(poly, sz, cr);
214 printf("Case %d: %.5lf", ++kase, area/pi/r/r*100);
215 puts("%");
216 }
217 return 0;
218 } View Code
转载于:.html
本文发布于:2024-02-03 08:24:17,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170691985649824.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
| 留言与评论(共有 0 条评论) |