2024年2月4日发(作者:)
十进制转二进制
110011
1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为一时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
十进制整数转二进制
如:255=(11111111)B
255/2=127=====余1
127/2=63======余1
63/2=31=======余1
31/2=15=======余1
15/2=7========余1
7/2=3=========余1
3/2=1=========余1
1/2=0=========余1
789=1100010101
789/2=394.5 =1 第10位
394/2=197 =0 第9位
197/2=98.5 =1 第8位
98/2=49 =0 第7位
49/2=24.5 =1 第6位
24/2=12 =0 第5位
12/2=6 =0 第4位
6/2=3 =0 第3位
3/2=1.5 =1 第2位
1/2=0.5 =1 第1位
十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直
到积中的整数部分为零,或者整数部分为1,此时0或1为二进制的最后一位。或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
十进制小数转二进制
如:0.625=(0.101)B
0.625*2=1.25======取出整数部分1
0.25*2=0.5========取出整数部分0
0.5*2=1==========取出整数部分1
再如:0.7=(0.1 )B
0.7*2=1.4========取出整数部分1
0.4*2=0.8========取出整数部分0
0.8*2=1.6========取出整数部分1
0.6*2=1.2========取出整数部分1
0.2*2=0.4========取出整数部分0
0.4*2=0.8========取出整数部分0
0.8*2=1.6========取出整数部分1
0.6*2=1.2========取出整数部分1
0.2*2=0.4========取出整数部分0
二进制数转换成十进制数
二进制的1101转化成十进制
1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13
转化成十进制要从右到左用二进制的每个数去乘以2的相应次方
不过次方要从0开始
相反 用十进制的13除以2 每除一下将余数就记在旁边
最后按余数从下向上排列就可得到1101
十进制转二进制:
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写 就是结果
例如302
302/2 = 151 余0
151/2 = 75 余1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
1/2 = 0 余1
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。
二进制转十进制
本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样:
数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是1
2的1次方是2
2的2次方是4
2的3次方是8
2的4次方是16
2的5次方是32
2的6次方是64
2的7次方是128
2的8次方是256
2的9次方是512
2的10次方是1024
2的11次方是2048
2的12次方是4096
2的13次方是8192
2的14次方是16384
2的15次方是32768
2的16次方是65536
在这里仅为您提供前16次方,若需要更多请自己查询。
整数的存储方式:计算机用二进制来表示整数,最高位是符号位
浮点数的存储方式:
首先了解如何用二进制表示小数(也就是如何把十进制小数转化为二进制表示):
举一个简单例子,十进制小数 10.625
1)首先转换整数部分:10 = 1010b
2)小数部分0.625 = 0.101b
(用“乘2取整法”:0.625*2=1.25,得第一位为1,0.25*2=0.5,得第二位为0,0.5*2=1,
得第三位为1,余下小数部分为零,就可以结束了)
3)于是得到 10.625=1010.101b
换个表示方式更加深入理解:
1*(10^1)+0*(10^0)+6*(10^-1)+2*(10^-2)+5*(10^-3) =
1*(2^3) + 0*(2^2) + 1*(2^1) + 0*(2^0) + 1*(2^-1) + 0*(2^-2) + 1*(2^-3)
4) 类似十进制可以用指数形式表示:
10.625=10625*(10^-3)
所得的二进制小数也可以这样指数形式表述:
1010.101b=1010101 * (2^-3)
也就是用有效数字a和指数e来表述: a * (2^e)
用一个32bit的空间(bit0~bit31)来存储这么一个浮点数,如此分配存储空间:
bit0 ~ bit22 共23bit,用来表示有效数字部分,也就是a,本例中a=1010101
bit23 - bit30 共8个bit,用来表是指数,也就是e,范围从-128到127,实际数据中的指数是原始指数加上127得到的,如果超过了127,则从-128开始计,所以这里e=-3表示为124
bit31 为符号位,1表示负数,这里应该为0
把上述结果填入32bit的存储器,就是计算机表示小数10.625的形式。
注意这个例子的特殊性:它的小数部分正好可以用有限长度的2进制小数表示,因此,而且整个有效数字部分a的总长度小于23,因此它精确的表示了10.625,但是有的情况下,有效数字部分的长度可能超过23,甚至是无限多的,那时候就只好把后面的位数截掉了,那样表示的结果就只是一个近似值而非精确值;显然,存储长度越长,精度就越高,比如双精度浮点数长度为64位,1位符号位,11位指数位,52位有效数字。
本文发布于:2024-02-04 02:09:46,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170698378652034.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |