一个分区列表,一个rdd有多个分区,后期spark任务计算是以分区为单位,一个分区就对应上一个task线程。 通过val File(文件) 如果这个文件大小的block个数小于等于2,它产生的rdd的分区数就是2 如果这个文件大小的block个数大于2,它产生的rdd的分区数跟文件的block相同
由一个函数计算每一个分片 比如: rdd2=rdd1.map(x=>(x,1)) ,这里指的就是每个单词计为1的函数
一个rdd会依赖于其他多个rdd,这里就涉及到rdd与rdd之间的依赖关系,后期spark任务的容错机制就是根据这个特性而来。 比如: rdd2=rdd1.map(x=>(x,1)) rdd2的结果是通过rdd1调用了map方法生成,那么rdd2就依赖于rdd1的结果 对其他RDD的依赖列表,依赖还具体分为宽依赖和窄依赖,但并不是所有的RDD都有依赖。
(可选项) 对于kv类型的rdd才会有分区函数(必须要产生shuffle),对于不是kv类型的rdd分区函数是None。 分区函数的作用:它是决定了原始rdd的数据会流入到下面rdd的哪些分区中。 spark的分区函数有2种:第一种hashPartitioner(默认值), 通过 key.has
本文发布于:2024-02-04 17:49:26,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170712965957981.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |