onion routing, online tracking, privacy policies, genetic privacy, social networks
In the attacker ’ ’ ’s model of the world, the actual database D mathcal D D can be either D D D or D ′ D' D′.
P [ D = D ] mathbb P[mathcal D=D] P[D=D] is the initial suspicion of the attacker. Similarly, their another initial suspicion is P [ D = D ′ ] = 1 − P [ D = D ] mathbb P[mathcal D=D'] = 1-mathbb P[mathcal D=D] P[D=D′]=1−P[D=D].
The updated suspicion P [ D = D ∣ A ( D ) = O ] mathbb P[mathcal D=D | A(mathcal D)=mathcal O] P[D=D∣A(D)=O] is the attacker ’ ’ ’s model after seeing the mechanism returns output O mathcal O O.
With differential privacy, the updated probability(suspicion) is never too far from the initial suspicion. The black line is what happens if the attacker didn ’ ’ ’t get their suspicion updated at all. The blue lines are the lower and upper bounds on the updated suspicion: it can be anywhere between the two.
,
Proof :
,
Bayes ’ ’ ’ rule : P [ D = D ∣ A ( D ) = O ] = P [ D = D ] ⋅ P [ A ( D ) = O ∣ D = D ] P [ A ( D ) = O ] mathbb P[mathcal D=D∣A(mathcal D)=mathcal O] = frac{ mathbb P[mathcal D=D] · mathbb P[A(mathcal D)=mathcal O∣mathcal D=D] }{ P[A(mathcal D)=mathcal O] } P[D=D∣A(D)=O]=P[A(D)=O]P[D=D]⋅P[A(D)=O∣D=D]
,
P [ D = D ∣ A ( D ) = O ] P [ D = D ′ ∣ A ( D ) = O ] = P [ D = D ] ⋅ P [ A ( D ) = O ∣ D = D ] P [ D = D ′ ] ⋅ P [ A ( D ) = O ∣ D = D ′ ] = P [ D = D ] ⋅ P [ A ( D ) = O ] P [ D = D ′ ] ⋅ P [ A ( D ′ ) = O ] frac{ mathbb P[mathcal D=D∣A(mathcal D)=mathcal O] }{ mathbb P[mathcal D=D'∣A(mathcal D)=mathcal O] } = frac{ mathbb P[mathcal D=D] · mathbb P[A(mathcal D)=mathcal O∣mathcal D=D] }{ mathbb P[mathcal D=D'] · mathbb P[A(mathcal D)=mathcal O∣mathcal D=D'] } = frac{ mathbb P[mathcal D=D] · mathbb P[A(D)=mathcal O] }{ mathbb P[mathcal D=D'] · mathbb P[A(D')=mathcal O] } P[D=D′∣A(D)=O]P[D=D∣A(D)=O]=P[D=D′]⋅P[A(D)=O∣D=D′]P[D=D]⋅P[A(D)=O∣D=D]=P[D=D′]⋅P[A(D′)=O]P[D=D]⋅P[A(D)=O]
,
Differential privacy : e − ε ≤ P [ A ( D ) = O ] P [ A ( D ′ ) = O ] ≤ e ε e^{-varepsilon} le frac{ mathbb P[A(D)=mathcal O] }{ mathbb P[A(D')=mathcal O] } le e^varepsilon e−ε≤P[A(D′)=O]P[A(D)=O]≤eε
,
e − ε ⋅ P [ D = D ] P [ D = D ′ ] ≤ P [ D = D ∣ A ( D ) = O ] P [ D = D ′ ∣ A ( D ) = O ] ≤ e ε ⋅ P [ D = D ] P [ D = D ′ ] e^{-varepsilon} · frac{mathbb{P}left[mathcal D=Dright]}{mathbb{P}left[mathcal D=D'right]} le frac{mathbb{P}left[mathcal D=Dmid A(mathcal D)=mathcal Oright]}{mathbb{P}left[mathcal D=D'mid A(mathcal D)=mathcal Oright]} le e^varepsilon · frac{mathbb{P}left[mathcal D=Dright]}{mathbb{P}left[mathcal D=D'right]} e−ε⋅P[D=D′]P[D=D]≤P[D=D′∣A(D)=O]P[D=D∣A(D)=O]≤eε⋅P[D=D′]P[D=D]
,
Replace P [ D = D ′ ] mathbb P[mathcal D=D'] P[D=D′] with 1 − P [ D = D ] 1-mathbb P[mathcal D=D] 1−P[D=D], do the same for P [ D = D ′ ∣ A ( D ) = O ] mathbb{P}left[mathcal D=D' | A(mathcal D)=mathcal Oright] P[D=D′∣A(D)=O], and solve for P [ D = D ∣ A ( D ) = O ] mathbb{P}left[mathcal D=D | A(mathcal D)=mathcal Oright] P[D=D∣A(D)=O]
,
P [ D = D ] e ε + ( 1 − e ε ) ⋅ P [ D = D ] ≤ P [ D = D ∣ A ( D ) = O ] ≤ e ε ⋅ P [ D = D ] 1 + ( e ε − 1 ) ⋅ P [ D = D ] frac{mathbb{P}left[mathcal D=Dright]}{e^{varepsilon}+left(1-e^{varepsilon}right) · mathbb{P}left[mathcal D=Dright]} leq mathbb{P}left[mathcal D=Dmid Aleft(mathcal Dright)=mathcal Oright] leq frac{e^{varepsilon} · mathbb{P}left[mathcal D=Dright]}{1+left(e^{varepsilon}-1right)cdotmathbb{P}left[mathcal D=Dright]} eε+(1−eε)⋅P[D=D]P[D=D]≤P[D=D∣A(D)=O]≤1+(eε−1)⋅P[D=D]eε⋅P[D=D]
,
We can draw a generalization of this graph for various values of ε varepsilon ε :
Recall the proof above. We saw that ε varepsilon ε bounds the evolution of betting odds : P [ D = D 1 ∣ A ( D ) = O ] P [ D = D 2 ∣ A ( D ) = O ] ≤ e ε ⋅ P [ D = D 1 ] P [ D = D 2 ] frac{mathbb{P}left[D=D_1mid A(D)=Oright]}{mathbb{P}left[D=D_2mid A(D)=Oright]} le e^varepsilon · frac{mathbb{P}left[D=D_1right]}{mathbb{P}left[D=D_2right]} P[D=D2∣A(D)=O]P[D=D1∣A(D)=O]≤eε⋅P[D=D2]P[D=D1]
Let us define:
L D 1 , D 2 ( O ) = ln P [ D = D 1 ∣ A ( D ) = O ] P [ D = D 2 ∣ A ( D ) = O ] P [ D = D 1 ] P [ D = D 2 ] = ln ( P [ A ( D 1 ) = O ] P [ A ( D 2 ) = O ] ) mathcal{L}_{D_1,D_2}(O) = lnfrac{ , frac{ mathbb{P}left[D=D_1mid A(D)=Oright]}{mathbb{P}left[D=D_2mid A(D)=Oright]} ,}{ frac{mathbb{P}left[D=D_1right]}{mathbb{P}left[D=D_2right]} } = lnleft(frac{mathbb{P}left[A(D_1)=Oright]}{mathbb{P}left[A(D_2)=Oright]}right) LD1,D2(O)=lnP[D=D2]P[D=D1]P[D=D2∣A(D)=O]P[D=D1∣A(D)=O]=ln(P[A(D2)=O]P[A(D1)=O])
Intuitively, the privacy loss random variable is the actual ε varepsilon ε value for a specific output O O O.
在定义 P [ A ( D 1 ) = O ] ≤ e ε ⋅ P [ A ( D 2 ) = O ] mathbb{P}[A(D_1)=O] le e^varepsilon · mathbb{P}[A(D_2)=O] P[A(D1)=O]≤eε⋅P[A(D2)=O] 中取 ≤ le ≤的体现:
quad,,,,
实际上只有当输出 O O O 在 O = A ( D 1 ) O=A(D_1) O=A(D1) 与 O = A ( D 2 ) O=A(D_2) O=A(D2) 之间时才取 < < < , 此时同样 L D 1 , D 2 ( O ) ≤ ε mathcal{L}_{D_1,D_2}(O) le varepsilon LD1,D2(O)≤ε 只取 < < <
δ = ∑ O P [ A ( D 1 ) = O ] ⋅ max ( 0 , 1 − e ε − L D 1 , D 2 ( O ) ) = E O ∼ A ( D 1 ) [ max ( 0 , 1 − e ε − L D 1 , D 2 ( O ) ) ] delta ,,,=,,, sum_{O} mathbb{P}[A(D_1)=O] , · maxleft(0, 1 -e^{varepsilon-{mathcal{L}_{D_1,D_2}(O)}}right) ,,,=,,, mathbb{E}_{Osim A(D_1)} left[ maxleft(0, 1 - e^{varepsilon-{mathcal{L}_{D_1,D_2}(O)}}right)right] δ=O∑P[A(D1)=O]⋅max(0,1−eε−LD1,D2(O))=EO∼A(D1)[max(0,1−eε−LD1,D2(O))]
Intuitively, in ( ε , δ ) (varepsilon,delta) (ε,δ)-DP, the δ delta δ is the area highlighted below.
注 : 使用高斯噪声时, 若仅仅直观地将 δ ,delta, δ理解为是 ( ε , 0 ) ,(varepsilon,0) (ε,0)- D P DP, DP即传统 ε ,varepsilon ε- D P DP, DP的定义可以被违反的概率, 则是选取了 δ = δ 1 ,delta=delta_1 δ=δ1
但实际上 δ 2 ,delta_2 δ2更紧。从上图可见 , δ 2 < δ 1 delta_2<delta_1 δ2<δ1 , 因为 δ 1 ,delta_1 δ1在上图中也可以看作是长为 δ 1 ,delta_1 δ1宽为1的矩形面积, 显然大于阴影部分的面积 δ 2 ,delta_2 δ2
上述 δ 1 ,delta_1, δ1( , 即传统 ε ,varepsilon ε- D P DP, DP的定义可以被违反的概率 , ) , 的直观意义如下图 :
Proof :
,
The definition of ( ε , δ ) (varepsilon,delta) (ε,δ)- D P DP DP : P [ A ( D 1 ) ∈ S ] ≤ e ε ⋅ P [ A ( D 2 ) ∈ S ] + δ . mathbb{P}[A(D_1)in S] le e^varepsiloncdotmathbb{P}[A(D_2)in S]+delta. P[A(D1)∈S]≤eε⋅P[A(D2)∈S]+δ.
Fix a mechanism A A A and a ε ≥ 0 varepsilon ge0 ε≥0. For each possible set of outputs S S S, we can compute:
,
δ = max S ( P [ A ( D 1 ) ∈ S ] − e ε ⋅ P [ A ( D 2 ) ∈ S ] ) delta = max_{S} left(mathbb{P}[A(D_1)in S] - e^varepsiloncdotmathbb{P}[A(D_2)in S]right) δ=maxS(P[A(D1)∈S]−eε⋅P[A(D2)∈S])
,
The set S S S that maximizes the quantity above is:
,
S m a x = { O ∣ P [ A ( D 1 ) = O ] > e ε ⋅ P [ A ( D 2 ) = O ] } = { O ∣ L D 1 , D 2 ( O ) > ε } S_{max} = left{O mid mathbb{P}[A(D_1)=O] > e^varepsiloncdotmathbb{P}[A(D_2)=O]right} ={ O mid , mathcal{L}_{D_1,D_2}(O)>varepsilon ,, } Smax={O∣P[A(D1)=O]>eε⋅P[A(D2)=O]}={O∣LD1,D2(O)>ε}
,
So we have:
,
δ = P [ A ( D 1 ) ∈ S m a x ] − e ε ⋅ P [ A ( D 2 ) ∈ S m a x ] = ∑ O ∈ S m a x P [ A ( D 1 ) = O ] − e ε ⋅ P [ A ( D 2 ) = O ] = ∑ O ∈ S m a x P [ A ( D 1 ) = O ] ( 1 − e ε e L D 1 , D 2 ( O ) ) delta = mathbb{P}[A(D_1)in S_{max}] - e^varepsiloncdotmathbb{P}[A(D_2)in S_{max}] \ ,,,,, = sum_{Oin S_{max}} mathbb{P}[A(D_1)=O] - e^varepsiloncdotmathbb{P}[A(D_2)=O] \ ,,,,, = sum_{Oin S_{max}} mathbb{P}[A(D_1)=O] left(1 - frac{e^varepsilon}{e^{mathcal{L}_{D_1,D_2}(O)}}right) δ=P[A(D1)∈Smax]−eε⋅P[A(D2)∈Smax]=∑O∈SmaxP[A(D1)=O]−eε⋅P[A(D2)=O]=∑O∈SmaxP[A(D1)=O](1−eLD1,D2(O)eε)
,
δ = ∑ O P [ A ( D 1 ) = O ] ⋅ max ( 0 , 1 − e ε − L D 1 , D 2 ( O ) ) = E O ∼ A ( D 1 ) [ max ( 0 , 1 − e ε − L D 1 , D 2 ( O ) ) ] delta = sum_{O} mathbb{P}[A(D_1)=O] , · maxleft(0, 1 -e^{varepsilon-{mathcal{L}_{D_1,D_2}(O)}}right) ,,,=,,, mathbb{E}_{Osim A(D_1)} left[ maxleft(0, 1 - e^{varepsilon-{mathcal{L}_{D_1,D_2}(O)}}right)right] δ=∑OP[A(D1)=O]⋅max(0,1−eε−LD1,D2(O))=EO∼A(D1)[max(0,1−eε−LD1,D2(O))]
C C C is the algorithm which combines A A A and B B B : C ( D ) = ( A ( D ) , B ( D ) ) C( mathcal D )=( A(mathcal D) , B(mathcal D)) C(D)=(A(D),B(D)).
The output of this algorithm will be a pair of outputs: O = ( O A , O B ) mathcal O=(mathcal O_A , mathcal O_B) O=(OA,OB).
C C C is ( ε A varepsilon_A εA+ ε B varepsilon_B εB)-differentially private. / C C C is ( ε A varepsilon_A εA+ ε B varepsilon_B εB , δ A delta_A δA+ δ B delta_B δB)-differentially private.
Until very recently, there was no middle ground between the two options. The choice was binary: either accept a much larger level of noise (Local differential privacy), or collect raw data (Global differential privacy). This is starting to change, thanks to recent work on a novel type of architecture called ESA.
博文参考链接(Google)
博文参考链接(DP创始者之一)
本文发布于:2024-02-04 23:54:43,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170719281360916.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |