随机森林简介
如果读者接触过决策树(Decision Tree)的话,那么会很容易理解什么是随机森林。随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,这样的比喻还是很贴切的,其实这也是随机森林的主要思想—集成思想的体现。“随机”的含义我们会在下边部分讲到。
其实从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的 Bagging 思想。
更多关于此方法在宏基因组学中的应用,请阅读之前分享的文章:
R randomForest包
randomForest包主要功能是分类和回归分析,一共提供了39个函数,最常用的就是randomForest来实现分类(Classification)和时间序列回归(Regression)
今天我们先讲最常用的分类方法(用于分组的特征Features),下周再讲解回归的应用(时间序列预测模式,如预测股票、尸体死亡时间等)。
安装与加载# 安装
install.packages("randomForest")
# 加载
library(randomForest)
分类Classification
先了解一下输入数据格式,方便准备
使用R内置鸢尾花数据data(iris)
head(iris)
数据包括150个样品,4列属性数据,1列分组数据。Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5
本文发布于:2024-02-05 00:11:17,感谢您对本站的认可!
本文链接:https://www.4u4v.net/it/170719562261071.html
版权声明:本站内容均来自互联网,仅供演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
留言与评论(共有 0 条评论) |